


C Programming

Greg Perry and Dean Miller

800 East 96th Street 
Indianapolis, Indiana 46240

Third Edition

00_9780789751980_fm.indd   i 7/17/13   12:29 PM



C Programming Absolute Beginner’s Guide
Third Edition
Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in 
a retrieval system, or transmitted by any means, electronic, mechanical, 
photocopying, recording, or otherwise, without written permission from 
the publisher. No patent liability is assumed with respect to the use of 
the information contained herein. Although every precaution has been 
taken in the preparation of this book, the publisher and authors assume no 
responsibility for errors or omissions. Nor is any liability assumed for damages 
resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5198-0
ISBN-10: 0-7897-5198-4

Library of Congress Control Number: 2013943628

Printe  d in the United States of America

Trademarks
All terms mentioned in this book that are known to be trademarks or service 
marks have been appropriately capitalized. Que Publishing cannot attest to 
the accuracy of this information. Use of a term in this book should not be 
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate 
as possible, but no warranty or fitness is implied. The information provided is 
on an “as is” basis. The authors and the publisher shall have neither liability 
nor responsibility to any person or entity with respect to any loss or damages 
arising from the information contained in this book or from the use of the 
programs accompanying it.

Bulk Sales
Que Publishing offers excellent discounts on this book when ordered in 
quantity for bulk purchases or special sales. For more information, please 
contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Krista Hansing Editorial 
Services, Inc.

Indexer
Brad Herriman

Proofreader
Anne Goebel

Technical Editor
Greg Perry

Publishing Coordinator
Vanessa Evans

Interior Designer
Anne Jones

Cover Designer
Matt Coleman

Compositor
TnT Design, Inc.

Third Printing: January 2015



Contents at a Glance

Introduction ........................................................................................................... 1

Part I: Jumping Right In

1 What Is C Programming, and Why Should I Care? ................................ 5
2 Writing Your First C Program ..................................................................13
3 What Does This Do? Clarifying Your Code with Comments ...............23
4 Your World Premiere—Putting Your Program’s Results 
 Up on the Screen .....................................................................................31
5 Adding Variables to Your Programs.......................................................41
6 Adding Words to Your Programs ...........................................................49
7 Making Your Programs More Powerful with 
 #include and #define ........................................................................57
8 Interacting with Users ..............................................................................65

Part II: Putting C to Work for You with Operators and Expressions

9 Crunching the Numbers—Letting C Handle Math for You .................73
10 Powering Up Your Variables with Assignments and Expressions .......83
11 The Fork in the Road—Testing Data to Pick a Path .............................91
12 Juggling Several Choices with Logical Operators .............................103
13 A Bigger Bag of Tricks—Some More Operators for 
 Your Programs ........................................................................................115

Part III: Fleshing Out Your Programs

14 Code Repeat—Using Loops to Save Time and Effort .......................123
15 Looking for Another Way to Create Loops .........................................131
16 Breaking in and out of Looped Code ..................................................141
17 Making the case for the switch Statement .....................................149
18 Increasing Your Program’s Output (and Input) ...................................163
19 Getting More from Your Strings ...........................................................171
20 Advanced Math (for the Computer, Not You!) ...................................181

Part IV: Managing Data with Your C Programs

21 Dealing with Arrays ................................................................................193
22 Searching Arrays.....................................................................................201
23 Alphabetizing and Arranging Your Data .............................................209
24 Solving the Mystery of Pointers ............................................................221
25 Arrays and Pointers ................................................................................231
26 Maximizing Your Computer’s Memory ................................................243
27 Setting Up Your Data with Structures ..................................................257

00_9780789751980_fm.indd   iii 7/17/13   12:29 PM



iv

Part V: Files and Functions

28 Saving Sequential Files to Your Computer .........................................267
29 Saving Random Files to Your Computer .............................................277
30 Organizing Your Programs with Functions ..........................................285
31 Passing Variables to Your Functions ....................................................293
32 Returning Data from Your Functions ...................................................305

Appendixes

A The ASCII Table .....................................................................................313
B The Draw Poker Program ......................................................................319

Index ..................................................................................................................331

00_9780789751980_fm.indd   iv 7/17/13   12:29 PM



Table of Contents
Introduction ......................................................................................................................1

Who’s This Book For? ................................................................................................ 2

What Makes This Book Different? ........................................................................... 2

This Book’s Design Elements ................................................................................... 3

How Can I Have Fun with C? ................................................................................... 4

What Do I Do Now? .................................................................................................. 4

Part I: Jumping Right In

1 What Is C Programming, and Why Should I Care? ............................................5

What Is a Program? ................................................................................................... 6

What You Need to Write C Programs ..................................................................... 7

The Programming Process ......................................................................................10

Using C .....................................................................................................................11

2 Writing Your First C Program ..............................................................................13

A Down-and-Dirty Chunk of Code ........................................................................14

The main() Function .............................................................................................16

Kinds of Data ...........................................................................................................17

Characters and C ................................................................................................18

Numbers in C ......................................................................................................19

Wrapping Things Up with Another Example Program ........................................21

3 What Does This Do? Clarifying Your Code with Comments ..........................23

Commenting on Your Code ...................................................................................24

Specifying Comments .............................................................................................25

Whitespace ...............................................................................................................27

A Second Style for Your Comments ......................................................................28

4 Your World Premiere—Putting Your Program’s Results 
Up on the Screen .................................................................................................31

How to Use printf() ...........................................................................................32

The Format of printf() .................................................................................32

Printing Strings .........................................................................................................33

00_9780789751980_fm.indd   v 7/17/13   12:29 PM



vi

Escape Sequences ...................................................................................................34

Conversion Characters ............................................................................................36

Putting It All Together with a Code Example .......................................................38

5 Adding Variables to Your Programs ...................................................................41

Kinds of Variables ....................................................................................................42

Naming Variables ....................................................................................................43

Defining Variables ....................................................................................................44

Storing Data in Variables ........................................................................................45

6 Adding Words to Your Programs ........................................................................49

Understanding the String Terminator ....................................................................50

The Length of Strings ..............................................................................................51

Character Arrays: Lists of Characters ....................................................................52

Initializing Strings .....................................................................................................54

7 Making Your Programs More Powerful with #include and #define .......57

Including Files ..........................................................................................................58

Placing #include Directives .................................................................................60

Defining Constants ..................................................................................................60

Building a Header File and Program .....................................................................62

8 Interacting with Users ...........................................................................................65

Looking at scanf() ...............................................................................................66

Prompting for scanf()..........................................................................................66

Problems with scanf() .........................................................................................68

Part II: Putting C to Work for You with Operators and Expressions

9 Crunching the Numbers—Letting C Handle Math for You ............................73

Basic Arithmetic .......................................................................................................74

Order of Operators .................................................................................................77

Break the Rules with Parentheses ..........................................................................79

Assignments Everywhere ........................................................................................80

00_9780789751980_fm.indd   vi 7/17/13   12:29 PM



vii

10 Powering Up Your Variables with Assignments and Expressions .................83

Compound Assignment ..........................................................................................84

Watch That Order! ...................................................................................................88

Typecasting: Hollywood Could Take Lessons from C ..........................................88

11 The Fork in the Road—Testing Data to Pick a Path ........................................91

Testing Data .............................................................................................................92

Using if ...................................................................................................................93

Otherwise…: Using else .......................................................................................96

12 Juggling Several Choices with Logical Operators ........................................ 103

Getting Logical ......................................................................................................104

Avoiding the Negative ..........................................................................................109

The Order of Logical Operators ..........................................................................111

13 A Bigger Bag of Tricks—Some More Operators for Your Programs ......... 115

Goodbye if…else; Hello, Conditional ..............................................................116

The Small-Change Operators: ++ and -- ..........................................................119

Sizing Up the Situation .........................................................................................121

Part III: Fleshing Out Your Programs

14 Code Repeat—Using Loops to Save Time and Effort .................................. 123

while We Repeat .................................................................................................124

Using while ..........................................................................................................125

Using do…while ...................................................................................................127

15 Looking for Another Way to Create Loops ................................................... 131

for Repeat’s Sake! ................................................................................................132

Working with for ..................................................................................................134

16 Breaking in and out of Looped Code ............................................................. 141

Take a break .........................................................................................................142

Let’s continue Working ......................................................................................145

00_9780789751980_fm.indd   vii 7/17/13   12:29 PM



viii

17 Making the case for the switch Statement ................................................ 149

Making the switch ..............................................................................................151

break and switch...............................................................................................153

Efficiency Considerations ......................................................................................154

18 Increasing Your Program’s Output (and Input) .............................................. 163

putchar() and getchar() ..............................................................................164

The Newline Consideration ..................................................................................167

A Little Faster: getch() ......................................................................................169

19 Getting More from Your Strings ...................................................................... 171

Character-Testing Functions .................................................................................172

Is the Case Correct? ..............................................................................................172

Case-Changing Functions.....................................................................................176

String Functions .....................................................................................................176

20 Advanced Math (for the Computer, Not You!) .............................................. 181

Practicing Your Math .............................................................................................182

Doing More Conversions ......................................................................................183

Getting into Trig and Other Really Hard Stuff ....................................................184

Getting Random ....................................................................................................187

Part IV: Managing Data with Your C Programs

21 Dealing with Arrays ............................................................................................ 193

Reviewing Arrays ...................................................................................................194

Putting Values in Arrays ........................................................................................197

22 Searching Arrays ................................................................................................. 201

Filling Arrays ...........................................................................................................202

Finders, Keepers ....................................................................................................202

23 Alphabetizing and Arranging Your Data ........................................................ 209

Putting Your House in Order: Sorting .................................................................210

Faster Searches ......................................................................................................215

00_9780789751980_fm.indd   viii 7/17/13   12:29 PM



ix

24 Solving the Mystery of Pointers ....................................................................... 221

Memory Addresses ................................................................................................222

Defining Pointer Variables ....................................................................................222

Using the Dereferencing * ...................................................................................225

25 Arrays and Pointers ............................................................................................ 231

Array Names Are Pointers ....................................................................................232

Getting Down in the List ......................................................................................233

Characters and Pointers ........................................................................................234

Be Careful with Lengths ........................................................................................234

Arrays of Pointers ..................................................................................................236

26 Maximizing Your Computer’s Memory ............................................................ 243

Thinking of the Heap ............................................................................................244

But Why Do I Need the Heap? ...........................................................................245

How Do I Allocate the Heap? ..............................................................................246

If There’s Not Enough Heap Memory .................................................................249

Freeing Heap Memory ..........................................................................................250

Multiple Allocations ...............................................................................................250

27 Setting Up Your Data with Structures ............................................................ 257

Defining a Structure ..............................................................................................258

Putting Data in Structure Variables ......................................................................262

Part V: Files and Functions

28 Saving Sequential Files to Your Computer .................................................... 267

Disk Files.................................................................................................................268

Opening a File .......................................................................................................268

Using Sequential Files ...........................................................................................270

29 Saving Random Files to Your Computer......................................................... 277

Opening Random Files .........................................................................................278

Moving Around in a File .......................................................................................279

00_9780789751980_fm.indd   ix 7/17/13   12:29 PM



x

30 Organizing Your Programs with Functions ..................................................... 285

Form Follows C Functions ....................................................................................286

Local or Global?.....................................................................................................290

31 Passing Variables to Your Functions ................................................................ 293

Passing Arguments ................................................................................................294

Methods of Passing Arguments ...........................................................................294

Passing by Value ...............................................................................................295

Passing by Address ..........................................................................................297

32 Returning Data from Your Functions ............................................................... 305

Returning Values ....................................................................................................306

The return Data Type .........................................................................................309

One Last Step: Prototype .....................................................................................309

Wrapping Things Up .............................................................................................312

Appendixes

A The ASCII Table ................................................................................................... 313

B The Draw Poker Program .................................................................................. 319

Index  ............................................................................................................................. 331

00_9780789751980_fm.indd   x 7/17/13   12:29 PM



xi

About the Authors
Greg Perry is a speaker and writer in both the programming and applications 
sides of computing. He is known for bringing programming topics down to the 
beginner’s level. Perry has been a programmer and trainer for two decades. He 
received his first degree in computer science and then earned a Master’s degree 
in corporate finance. Besides writing, he consults and lectures across the country, 
including at the acclaimed Software Development programming conferences. 
Perry is the author of more than 75 other computer books. In his spare time, he 
gives lectures on traveling in Italy, his second favorite place to be.

Dean Miller is a writer and editor with more than 20 years of experience in both 
the publishing and licensed consumer product businesses. Over the years, he 
has created or helped shape a number of bestselling books and series, including 
Teach Yourself in 21 Days, Teach Yourself in 24 Hours, and the Unleashed 
series, all from Sams Publishing. He has written books on C programming and 
professional wrestling, and is still looking for a way to combine the two into one 
strange amalgam.

00_9780789751980_fm.indd   xi 7/17/13   12:29 PM



xii

Dedication
To my wife and best friend, Fran Hatton, who’s always supported my dreams and was 
an incredible rock during the most challenging year of my professional career.

Acknowledgments
Greg: My thanks go to all my friends at Pearson. Most writers would refer to them 
as editors; to me, they are friends. I want all my readers to understand this: The 
people at Pearson care about you most of all. The things they do result from their 
concern for your knowledge and enjoyment.

On a more personal note, my beautiful bride, Jayne; my mother, Bettye Perry; 
and my friends, who wonder how I find the time to write, all deserve credit for 
supporting my need to write.

Dean: Thanks to Mark Taber for considering me for this project. I started my 
professional life in computer book publishing, and it is so gratifying to return after 
a 10-year hiatus. I’d like to thank Greg Perry for creating outstanding first and 
second editions upon which this version of the book is based. It was an honor 
working with him as his editor for the first two editions and a greater honor to 
coauthor this edition. I can only hope I did it justice. I appreciate the amazing 
work the editorial team of Mandie Frank, Krista Hansing, and the production team 
at Pearson put into this book.

On a personal level, I have to thank my three children, John, Alice, and Maggie 
and my wife Fran for their unending patience and support.

00_9780789751980_fm.indd   xii 7/17/13   12:29 PM



xiii

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. 
We value your opinion and want to know what we’re doing right, what we could 
do better, what areas you’d like to see us publish in, and any other words of 
wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you 
did or didn’t like about this book—as well as what we can do to make our books 
better.

Please note that we cannot help you with technical problems related to the 
topic of this book and may not be able to reply personally to every message we 
receive.

When you write, please be sure to include this book’s title, edition number, and 
authors, as well as your name and contact information. We will carefully review 
your comments and share them with the authors and editors who worked on the 
book.

Email: feedback@quepublishing.com

Mail:  Que Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at http://informit.com/register for 
convenient access to any updates, downloads, or errata that might be available 
for this book.

00_9780789751980_fm.indd   xiii 7/17/13   12:29 PM

../../../../../informit.com/register


This page intentionally left blank 



INTRODUCTION

Are you tired of seeing your friends get C programming jobs while you’re 

left out in the cold? Would you like to learn C but just don’t have the 

energy? Is your old, worn-out computer in need of a hot programming 

language to spice up its circuits? This book is just what the doctor ordered!

C Programming Absolute Beginner’s Guide breaks the commonality of 

computer books by talking to you at your level without talking down to 

you. This book is like your best friend sitting next to you teaching C. C 

Programming Absolute Beginner’s Guide attempts to express without 

impressing. It talks to you in plain language, not in “computerese.” The 

short chapters, line drawings, and occasionally humorous straight talk 

guide you through the maze of C programming faster, friendlier, and easier 

than any other book available today.

I N  T H I S  I N T R O D U C T I O N
• Who’s This Book For?

• What Makes This Book Different?

• This Book’s Design Elements

• How Can I Have Fun with C?

• What Do I Do Now?

01_9780789751980_intro.indd   1 7/17/13   12:29 PM



2 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Who’s This Book For?
This is a beginner’s book. If you have never programmed, this book is for you. No 
knowledge of any programming concept is assumed. If you can’t even spell C, you 
can learn to program in C with this book.

The phrase absolute beginner has different meanings at different times. Maybe 
you’ve tried to learn C but gave up. Many books and classes make C much more 
technical than it is. You might have programmed in other languages but are a 
beginner in C. If so, read on, O faithful one, because in 32 quick chapters, you’ll 
know C.

What Makes This Book Different?
This book doesn’t cloud issues with internal technical stuff that beginners in C 
don’t need. We’re of the firm belief that introductory principles have to be taught 
well and slowly. After you tackle the basics, the “harder” parts never seem hard. 
This book teaches you the real C that you need to get started.

C can be an extremely cryptic and difficult language. Many people try to learn 
C more than once. The problem is simply this: Any subject, whether it be brain 
surgery, mail sorting, or C programming, is easy if it’s explained properly. Nobody 
can teach you anything because you have to teach yourself—but if the instructor, 
book, or video doing the teaching doesn’t make the subject simple and fun, you 
won’t want to learn the subject.

We challenge you to find a more straightforward approach to C than is offered in 
the C Programming Absolute Beginner’s Guide. If you can, call one of us because 
we’d like to read it. (You thought maybe we’d offer you your money back?) 
Seriously, we’ve tried to provide you with a different kind of help from that which 
you find in most other places.

The biggest advantage this book offers is that we really like to write C programs—
and we like to teach C even more. We believe that you will learn to like C, too.

01_9780789751980_intro.indd   2 7/17/13   12:29 PM



INTRODUCTION 3

This Book’s Design Elements
Like many computer books, this book contains lots of helpful hints, tips, warnings, 
and so on. You will run across many notes and sidebars that bring these specific 
items to your attention.

TIP Many of this book’s tricks and tips (and there are lots 
of them) are highlighted as a Tip. When a really neat feature 
or code trick coincides with the topic you’re reading about, a 
Tip pinpoints what you can do to take advantage of the added 
bonus.

NOTE Throughout the C language, certain subjects provide 
a deeper level of understanding than others. A Note tells you 
about something you might not have thought about, such as a 
new use for the topic being discussed.

WARNING A Warning points out potential problems you 
could face with the particular topic being discussed. It indicates a 
warning you should heed or provides a way to fix a problem that 
can occur.

Each chapter ends by reviewing the key points you should remember from that 
chapter. One of the key features that ties everything together is the section titled 
“The Absolute Minimum.” This chapter summary states the chapter’s primary 
goal, lists a code example that highlights the concepts taught, and provides 
a code analysis that explains that code example. You’ll find these chapter 
summaries, which begin in Chapter 2, “Writing Your First C Program,” to be a 
welcome wrap-up of the chapter’s main points.

This book uses the following typographic conventions:

 • Code lines, variables, and any text you see onscreen appears in monospace.

 • Placeholders on format lines appear in italic monospace.

 • Parts of program output that the user typed appear in bold monospace.

 • New terms appear in italic.

 • Optional parameters in syntax explanations are enclosed in flat brackets 
([ ]). You do not type the brackets when you include these parameters.

01_9780789751980_intro.indd   3 7/17/13   12:29 PM



4 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

How Can I Have Fun with C?
Appendix B, “The Draw Poker Program,” contains a complete, working Draw 
Poker program. The program was kept as short as possible without sacrificing 
readable code and game-playing functionality. The game also had to be kept 
generic to work on all C compilers. Therefore, you won’t find fancy graphics, but 
when you learn C, you’ll easily be able to access your compiler’s specific graphics, 
sound, and data-entry routines to improve the program.

The program uses as much of this book’s contents as possible. Almost every 
topic taught in this book appears in the Draw Poker game. Too many books offer 
nothing more than snippets of code. The Draw Poker game gives you the chance 
to see the “big picture.” As you progress through this book, you’ll understand 
more and more of the game.

What Do I Do Now?
Turn the page and learn the C language.

01_9780789751980_intro.indd   4 7/17/13   12:29 PM



WHAT IS C PROGRAMMING, 
AND WHY SHOULD I CARE?
Although some people consider C to be difficult to learn and use, you’ll 

soon see that they are wrong. C is touted as being a cryptic program-

ming language, and it can be—but a well-written C program is just as 

easy to follow as a program written in any other programming language. 

The demand for programmers and developers today is high, and learn-

ing C is an effective foundation to build the skills needed in a variety of 

fields, including app development, game programming, and so much 

more.

If you’ve never written a program in your life, this chapter is an excellent 

beginning because it teaches you introductory programming concepts, 

explains what a program is, and provides a short history of the C lan-

guage. Get ready to be excited! C is a programming language rich in its 

capabilities.

I N  T H I S  C H A P T E R

1
• Understanding the basics of C programming

• Finding and installing a C compiler

• Learning the steps of the programming process

02_9780789751980_ch01.indd   5 7/17/13   12:29 PM



6 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

What Is a Program?
A computer isn’t smart. Believe it or not, on your worst days, you are still light-
years ahead of your computer in intelligence. You can think, and you can tell a 
computer what to do. Here is where the computer shines: It will obey your instruc-
tions. Your computer will sit for days processing the data you supply, without get-
ting bored or wanting overtime pay.

The computer can’t decide what to do on its own. Computers can’t think for them-
selves, so programmers (people who tell computers what to do) must give com-
puters extremely detailed instructions. Without instructions, a computer is useless; 
with incorrect instructions, a computer will not successfully execute your desired 
task. A computer can no more process your payroll without detailed instructions 
than an automobile can start by itself and drive around the block independently. 
The collection of detailed expressions that you supply when you want your com-
puter to perform a specific task is known as a program.

NOTE Word processors, apps, spreadsheets, and computer 
games are nothing more than computer programs. Facebook is a 
collection of programs. Without such programs, the computer would 
just sit there, not knowing what to do next. A word-processing pro-
gram contains a list of detailed instructions, written in a computer 
language such as C, that tells your computer exactly how to be a 
word processor. When you program, you are telling the computer to 
follow the instructions in the program you have supplied.

You can buy or download thousands of programs for your computer, tablet, or 
phone, but when a business needs a computer to perform a specific task, that 
business hires programmers and developers to create software that follows the 
specifications the business needs. You can make your computer or mobile device 
do many things, but you might not be able to find a program that does exactly 
what you want. This book rescues you from that dilemma. After you learn C, you 
will be able to write programs that contain instructions that tell the computer how 
to behave.

TIP A computer program tells your computer how to do what 
you want. Just as a chef needs a recipe to make a dish, a pro-
gram needs instructions to produce results. A recipe is nothing 
more than a set of detailed instructions that, if properly written, 
describes that proper sequence and the contents of the steps 
needed to prepare a certain dish. That’s exactly what a computer 
program is to your computer.

02_9780789751980_ch01.indd   6 7/17/13   12:29 PM



CHAPTER 1  WHAT IS C PROGRAMMING, AND WHY SHOULD I CARE? 7

Programs produce output when you run or execute them. The prepared dish is a 
recipe’s output, and the word processor or app is the output produced by a run-
ning program.

WARNING Just as when a chef gets an ingredient wrong or 
misses a step in a recipe, the resulting dish can be inedible; if you 
mistype code or skip a step, your program will not work.

What You Need to Write C Programs
Before you can write and execute a C program on your computer, you need a C 
compiler. The C compiler takes the C program you write and builds or compiles 
it (technical terms for making the program computer-readable), enabling you 
to run the compiled program when you’re ready to look at the results. Luckily, 
many excellent free software packages are available in which you can edit and 
compile your C programs. A simple web search will provide a list. This book uses 
Code::Blocks (www.codeblocks.org).

TIP If you run a search for “C Programming Compilers,” 
you’ll see a number of freeware options, including offerings from 
Borland and Microsoft. So why does this book use Code::Blocks? 
Because it offers versions for Windows, Macs, and Linux, so you 
can use a version of the software no matter what operating sys-
tem you use. However, feel free to pick whichever programming 
environment looks best to you.

If you surf to the Code::Blocks page and read the very first sentence, you may 
worry a bit (or a lot):

The open source, cross platform, free C++ IDE.

Open source refers to software code that users can alter or improve. (You will not 
be doing this anytime soon, so put it out of your mind.) Cross-platform is an adjec-
tive that means the software can run on different operating systems—as a begin-
ner, however, you need concern yourself with only your own platform. I think free 
is a term we can all get behind, and IDE is short for integrated development envi-
ronment, which just means you can write, edit, and debug your programs without 
having to switch software to do so. We get to debugging shortly.

Don’t panic about the C++ part. You can write either C or C++ programs in 
Code::Blocks. Finding a C compiler these days is harder. Most of the time, C com-
pilers come bundled with an advanced version of C, known as C++. Therefore, 
when you look for a C compiler, you will almost always find a combination C and 

02_9780789751980_ch01.indd   7 7/17/13   12:29 PM

../../../../../www.codeblocks.org/default.htm


8 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

C++ compiler, and often the C++ functionality is highlighted. The good news is 
that, after you learn C, you will already have a C++ compiler and you won’t have 
to learn the ins and outs of a new IDE.

Figure 1.1 shows the Code::Blocks home page. To download the C/C++ IDE, click 
the Downloads choice under the Main section in the left column.

FIGURE 1.1

The home page for Code::Blocks. You want to focus on the Downloads option.

After you select Downloads, you are taken to a page that further discusses three 
options: Binaries, Source, and SVN. The latter two options are advanced, so you 
can ignore them. Click Binaries.

NOTE Two things to consider when doing this installation. 
First, the screen shots in the book will probably be a little differ-
ent than what you see on the Internet—Code::Blocks is constantly 
improving the software, so the numbers (which refer to the soft-
ware version) are constantly increasing. The version of Code::Blocks 
used in the book was 10.05, but at last check, they are up to 12.11, 
and the number is probably even larger by the time you read 
this. Second, if you are a Windows user, make sure you select the 
larger file to download (which has mingw in its title). That version 
has debugging tools that will come in handy when you become a 
C-soned programmer. (Get it? No? Just me then?)

The next page presents a variety of options, depending on your operating system. 
If you select the Windows option, choose the second option, highlighted in Figure 
1.2. Having the full compiler and debugger will come in handy.

02_9780789751980_ch01.indd   8 7/17/13   12:29 PM



CHAPTER 1  WHAT IS C PROGRAMMING, AND WHY SHOULD I CARE? 9

FIGURE 1.2

Selecting the Windows IDE for download. You can choose either downloading source.

After you choose to download the program, go get yourself a snack—it’s a big 
file, so it takes several minutes to completely download. When it does, click the 
file and accept all defaults. (Only seasoned programmers need to tweak the instal-
lation.) Soon enough, Code::Blocks will be running on your computer. After you 
exit the Tip of the Day and set Code::Blocks as the associated program with all .c 
and .cpp files, you can also close the scripting window. You should be left with 
the opening screen of the software, pictured in Figure 1.3.

FIGURE 1.3

Welcome to your programming home!

02_9780789751980_ch01.indd   9 7/17/13   12:29 PM



10 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE The C program you write is called source code. A com-
piler translates C source code into machine language. Computers 
are made up of nothing more than thousands of electrical switches 
that are either on or off. Therefore, computers must ultimately be 
given instructions in binary. The prefix bi- means “two,” and the two 
states of electricity are called binary states. It’s much easier to use a 
C compiler to convert your C programs into 1s and 0s that represent 
internal on and off switch settings than for you to do it yourself.

The Programming Process
Most people follow these basic steps when writing a program:

 1. Decide exactly what the program should do.

 2. Use an editor to write and save your programming language instructions. An 
editor is a lot like a word processor (although not usually as fancy) that lets you 
create and edit text. All the popular C compilers include an integrated editor 
along with the programming language compiler. All C program filenames end 
in the .c file extension.

 3. Compile the program.

 4. Check for program errors. If any appear, fix them and go back to step 3.

 5. Execute the program.

NOTE An error in a computer program is called a bug. 
Getting rid of errors is called debugging a program.

Take some time to explore Code::Blocks or whatever compiler you choose to 
install on your computer. A robust IDE lets you perform these five steps easily, 
all from within the same environment. You can compile your program, view any 
errors, fix the errors, run the program, and look at the results, all from within the 
same screen and using a uniform set of menus.

WARNING If you have never programmed, this all might 
seem confusing. Relax. Most of today’s C compilers come with a 
handy tutorial you can use to learn the basics of the compiler’s 
editor and compiling commands.

Just in case you still don’t fully understand the need for a compiler, your source 
code is like the raw materials that your computer needs. The compiler is like a 
machine that converts those raw materials to a final product, a compiled program 
that the computer can understand.

02_9780789751980_ch01.indd   10 7/17/13   12:29 PM



CHAPTER 1  WHAT IS C PROGRAMMING, AND WHY SHOULD I CARE? 11

Using C
C is more efficient than most programming languages. It is also a relatively small 
programming language. In other words, you don’t have to learn many commands 
in C. Throughout this book, you will learn about C commands and other elements 
of the C language, such as operators, functions, and preprocessor directives.

Because of the many possible versions of C, a committee known as the American 
National Standards Institute (ANSI) committee developed a set of rules (known as 
ANSI C) for all versions of C. As long as you run programs using an ANSI C com-
piler, you can be sure that you can compile your C programs on almost any com-
puter that has an ANSI C compiler.

TIP In 1983, ANSI created the X3J11 committee to set a 
standard version of C. This became known as ANSI C. The most 
recent version of ANSI C, C11, was formally adopted in 2011.

As soon as you compile a C program, you can run the compiled program on any 
computer that is compatible with yours, whether or not the computer has an ANSI 
C compiler. “Great!” you might be saying. “But when do I get to write my first C 
program, let alone compile or run it?” Fear not—Chapter 2, “Writing Your First C 
Program,” takes you on your maiden C programming voyage.

THE ABSOLUTE MINIMUM
This chapter introduced you to the C programming language and helped you 
select a compiler to edit, debug, and run your program. Here are a few key points 
to remember:

 • Get a C compiler and install it on your computer.

 • Get ready to learn the C programming language.

 • Don’t worry that C is too complex. This book breaks down C concepts into 
easily digestible bits. With practice, you will do just fine.

02_9780789751980_ch01.indd   11 7/17/13   12:29 PM



This page intentionally left blank 



WRITING YOUR FIRST C 
PROGRAM
You get to see your first C program in this chapter! Please don’t try to 

understand every character of the C programs discussed here. Relax and 

just get familiar with the look and feel of C. After a while, you will begin 

to recognize elements common to all C programs.

I N  T H I S  C H A P T E R

2
• Typing your first program

• Using the main() function

• Identifying kinds of data

03_9780789751980_ch02.indd   13 7/17/13   12:29 PM



14 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

A Down-and-Dirty Chunk of Code
This section shows you a short but complete C program and discusses another 
program that appears in Appendix B, “The Draw Poker Program.” Both programs 
contain common and different elements. The first program is extremely simple:
/* Prints a message on the screen */

#include <stdio.h>

main()

{

      printf("Just one small step for coders. One giant leap for"); 

      printf(" programmers!\n");

      return 0;

}

Open your programming software and type in the program as listed. Simple, 
right? Probably not the first time you use your new compiler. When you open 
Code::Blocks for the first time, you will be greeted by a “Tip of the Day.” These 
tips will come in handy later, but right now you can just get rid of it by clicking 
Close.

To create your program, Click the File Menu and select New. Choose Empty File 
from the options that appear on the submenu. Now you’ve got a nice clean file to 
start writing your seven-line program.

After you type in your program, you will need to compile or build your program. 
To do this, click the little yellow gear icon in the upper-left corner. If you’ve typed 
the program in exactly and had no errors, you can then run the program by click-
ing the green right-facing arrow next to the gear. (The next icon in that row, with a 
gear and arrow, will do both the compiling and running of the program, simplify-
ing your life by reducing the number of arduous clicks you must perform from two 
to one.)

When you compile (or build) the program and run it, you should see something 
like Figure 2.1.

03_9780789751980_ch02.indd   14 7/17/13   12:29 PM



CHAPTER 2  WRITING YOUR FIRST C PROGRAM 15

FIGURE 2.1

The output of your first program.

NOTE Producing that one-line message took a lot of work! 
Actually, of the eight lines in the program, only two—the ones that start 
with printf—do the work that produces the output. The other lines 
provide “housekeeping chores” common to most C programs.

To see a much longer program, glance at Appendix B. Although the Draw Poker 
game there spans several pages, it contains elements common to the shorter pro-
gram you just saw.

Look through both the programs just discussed and notice any similarities. One 
of the first things you might notice is the use of braces ({}), parentheses (()), and 
backslashes (\). Be careful when typing C programs into your C compiler. C gets 
picky, for instance, if you accidentally type a square bracket ([) when you should 
type a brace.

WARNING In addition to making sure you don’t type the 
wrong character, be careful when typing code in a word processor 
and then copying it to your IDE. I typed the previous program in 
Word (for this book) and then copied it to Code::Blocks. When com-
piling the program, I received a number of errors because my quotes 
on the printf line were smart quotes created by the word proces-
sor (to give that cool slanted look), and the compiler did not recog-
nize them. After I deleted the quotes on the line and retyped them 
in my programming editor, the code compiled just fine. So if you get 
errors in programs, make sure the quotes are not the culprit.

03_9780789751980_ch02.indd   15 7/17/13   12:29 PM



16 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

C isn’t picky about everything. For instance, most of the spacing you see in C 
programs makes the programs clearer to people, not to C. As you program, add 
blank lines and indent sections of code that go together to help the appearance 
of the program and to make it easier for you to find what you are looking for.

TIP Use the Tab key to indent instead of typing a bunch of 
spaces. Most C editors let you adjust the tab spacing (the number 
of spaces that appear when you press Tab). Some C program 
lines get long, so a tab setting of three provides ample indention 
without making lines too long.

C requires that you use lowercase letters for all commands and predefined func-
tions. (You learn what a function is in the next section.) About the only time you 
use uppercase letters is on a line with #define and inside the printed messages 
you write.

The main() Function
The most important part of a C program is its main() function. Both of the pro-
grams discussed earlier have main() functions. Although at this point the distinc-
tion is not critical, main() is a C function, not a C command. A function is nothing 
more than a routine that performs some task. Some functions come with C, and 
some are created by you. C programs are made up of one or more functions. 
Each program must always include a main() function. A function is distinguished 
from a command by the parentheses that follow the function name. These are 
functions:

main() calcIt() printf() strlen()

and these are commands:

return while int if float

When you read other C programming books, manuals, and webpages, the author 
might decide to omit the parenthesis from the end of function names. For exam-
ple, you might read about the printf function instead of printf(). You’ll learn 
to recognize function names soon enough, so such differences won’t matter much 
to you. Most of the time, authors want to clarify the differences between functions 
and nonfunctions as much as possible, so you’ll usually see the parentheses.

03_9780789751980_ch02.indd   16 7/17/13   12:29 PM



CHAPTER 2  WRITING YOUR FIRST C PROGRAM 17

WARNING One of the functions just listed, calcIt(), 
contains an uppercase letter. However, the preceding section said 
you should stay away from uppercase letters. If a name has mul-
tiple parts, as in doReportPrint(), it’s common practice to use 
uppercase letters to begin the separate words, to increase read-
ability. (Spaces aren’t allowed in function names.) Stay away from 
typing words in all uppercase, but an uppercase letter for clarity 
once in a while is okay.

The required main() function and all of C’s supplied function names must contain 
lowercase letters. You can use uppercase for the functions that you write, but most 
C programmers stay with the lowercase function name convention.

Just as the home page is the beginning place to surf a website, main() is always 
the first place the computer begins when running your program. Even if main() is 
not the first function listed in your program, main() still determines the beginning 
of the program’s execution. Therefore, for readability, make main() the first func-
tion in every program you write. The programs in the next several chapters have 
only one function: main(). As you improve your C skills, you’ll learn why adding 
functions after main() improves your programming power even more. Chapter 
30, “Organizing Your Programs with Functions,” covers writing your own functions.

After the word main(), you always see an opening brace ({). When you find a 
matching closing brace (}), main() is finished. You might see additional pairs 
of braces within a main() function as well. For practice, look again at the long 
program in Appendix B. main() is the first function with code, and several other 
functions follow, each with braces and code.

NOTE The statement #include <stdio.h> is needed in 
almost every C program. It helps with printing and getting data. 
For now, always put this statement somewhere before main(). 
You will understand why the #include is important in Chapter 
7, “Making Your Programs More Powerful with #include and 
#define.”

Kinds of Data
Your C programs must use data made up of numbers, characters, and words; 
programs process that data into meaningful information. Although many different 
kinds of data exist, the following three data types are by far the most common 
used in C programming:

03_9780789751980_ch02.indd   17 7/17/13   12:29 PM



18 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

 • Characters

 • Integers

 • Floating points (also called real numbers)

TIP You might be yelling “How much math am I going to have 
to learn?! I didn’t think that was part of the bargain!” Well, you 
can relax, because C does your math for you; you don’t have to 
be able to add 2 and 2 to write C programs. You do, however, 
have to understand data types so that you will know how to 
choose the correct type when your program needs it.

Characters and C
A C character is any single character that your computer can represent. Your com-
puter knows 256 different characters. Each of them is found in something called the 
ASCII table, located in Appendix A, “The ASCII Table.” (ASCII is pronounced ask-
ee. If you don’t know-ee, you can just ask-ee.) Anything your computer can repre-
sent can be a character. Any or all of the following can be considered characters:

A a 4 % Q ! + = ]

NOTE The American National Standards Institute (ANSI), 
which developed ANSI C, also developed the code for the ASCII 
chart.

TIP Even the spacebar produces a character. Just as C needs 
to keep track of the letters of the alphabet, the digits, and all the 
other characters, it has to keep track of any blank spaces your 
program needs.

As you can see, every letter, number, and space is a character to C. Sure, a 4 
looks like a number, and it sometimes is, but it is also a character. If you indicate 
that a particular 4 is a character, you can’t do math with it. If you indicate that 
another 4 is to be a number, you can do math with that 4. The same holds for the 
special symbols. The plus sign (+) is a character, but the plus sign also performs 
addition. (There I go, bringing math back into the conversation!)

All of C’s character data is enclosed in apostrophes ('). Some people call apostro-
phes single quotation marks. Apostrophes differentiate character data from other 
kinds of data, such as numbers and math symbols. For example, in a C program, 
all of the following are character data:

03_9780789751980_ch02.indd   18 7/17/13   12:29 PM



CHAPTER 2  WRITING YOUR FIRST C PROGRAM 19

'A' 'a' '4' '%' ' ' '-'

None of the following can be character data because they have no apostrophes 
around them:

A a 4 % -

TIP None of the following are valid characters. Only single 
characters, not multiple characters, can go inside apostrophes.

‘C is fun’

‘C is hard’

‘I should be sailing!’

The first program in this chapter contains the character '\n'. At first, you might 
not think that \n is a single character, but it’s one of the few two-character combi-
nations that C interprets as a single character. This will make more sense later.

If you need to specify more than one character (except for the special characters 
that you’ll learn, like the \n just described), enclose the characters in quotation 
marks ("). A group of multiple characters is called a string. The following is a C 
string:

“C is fun to learn.”

NOTE That’s really all you need to know about characters 
and strings for now. In Chapters 4 through 6, you’ll learn how to 
use them in programs. When you see how to store characters in 
variables, you’ll see why the apostrophe and quotation marks are 
important.

Numbers in C
Although you might not have thought about it before now, numbers take on many 
different sizes and shapes. Your C program must have a way to store numbers, no 
matter what the numbers look like. You must store numbers in numeric variables. 
Before you look at variables, a review of the kinds of numbers will help.

Whole numbers are called integers. Integers have no decimal points. (Remember 
this rule: Like most reality shows, integers have no point whatsoever.) Any number 
without a decimal point is an integer. All of the following are integers:

10 54 0 –121 –68 752

03_9780789751980_ch02.indd   19 7/17/13   12:29 PM



20 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

WARNING Never begin an integer with a leading 0 (unless 
the number is zero), or C will think you typed the number in 
hexadecimal or octal. Hexadecimal and octal, sometimes called 
base-16 and base-8, respectively, are weird ways of represent-
ing numbers. 053 is an octal number, and 0x45 is a hexadecimal 
number. If you don’t know what all that means, just remember 
for now that C puts a hex on you if you mess around with leading 
zeroes before integers.

Numbers with decimal points are called floating-point numbers. All of the follow-
ing are floating-point numbers:

547.43 0.0 0.44384 9.1923 –168.470 .22

TIP As you can see, leading zeroes are okay in front of floating-
point numbers.

The choice of using integers or floating-point numbers depends on the data 
your programs are working with. Some values (such as ages and quantities) need 
only integers; other values (such as money amounts or weights) need the exact 
amounts floating-point numbers can provide. Internally, C stores integers differ-
ently than floating-point values. As you can see from Figure 2.2, a floating-point 
value usually takes twice as much memory as an integer. Therefore, if you can 
get away with using integers, do so—save floating points for values that need the 
decimal point.

1923

121.34

121.34

1923

Memory

FIGURE 2.2

Storing floating-point values often takes more memory than integers.

03_9780789751980_ch02.indd   20 7/17/13   12:29 PM



CHAPTER 2  WRITING YOUR FIRST C PROGRAM 21

NOTE Figure 2.2 shows you that integers generally take less 
memory than floating-point values, no matter how large or small 
the values stored there are. On any given day, a large post office 
box might get much less mail than a smaller one. The contents of 
the box don’t affect what the box is capable of holding. The size 
of C’s number storage is affected not by the value of the number, 
but by the type of the number.

Different C compilers use different amounts of storage for integers and floating-
point values. As you will learn later, there are ways of finding out exactly how 
much memory your C compiler uses for each type of data.

Wrapping Things Up with Another Example 
Program

This chapter’s goal was to familiarize you with the “look and feel” of a C program, 
primarily the main() function that includes executable C statements. As you 
saw, C is a free-form language that isn’t picky about spacing. C is, however, picky 
about lowercase letters. C requires lowercase spellings of all its commands and 
functions, such as printf().

At this point, don’t worry about the specifics of the code you see in this chapter. 
The rest of the book explains all the details. But it is still a great idea to type and 
study as many programs as possible—practice will increase your coding confidence! 
So here is a second program, one that uses the data types you just covered:
/* A Program that Uses the Characters, Integers, and Floating-Point 

Data Types */

#include <stdio.h>

main()

{

      printf("I am learning the %c programming language\n", 'C');

      printf("I have just completed Chapter %d\n", 2);

      printf("I am %.1f percent ready to move on ", 99.9);

      printf("to the next chapter!\n");

      return 0;

}

This short program does nothing more than print three messages onscreen. Each 
message includes one of the three data types mentioned in this chapter: a charac-
ter (C), an integer (2), and a floating-point number (99.9).

03_9780789751980_ch02.indd   21 7/17/13   12:29 PM



22 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE On the first printf statement, the %c tells the pro-
gram where to introduce the character 'C'. It is %c as an abbre-
viation for character, not because the character is a C. If you were 
learning the N programming language, you would still use %c to 
place the 'N' character.

The main() function is the only function in the program written by the program-
mer. The left and right braces ({ and}) always enclose the main() code, as well 
as any other function’s code that you might add to your programs. You’ll see 
another function, printf(), that is a built-in C function that produces output. 
Here is the program’s output:
I am learning the C programming language

I have just completed Chapter 2

I am 99.9 percent ready to move on to the next chapter!

TIP Try playing around with the program, changing the mes-
sages or data. You should even try making a mistake when typing, 
like forgetting a semicolon (;) at the end of a line, just to see what 
happens when you try to compile the program. Learning from 
mistakes can make you a better programmer!

THE ABSOLUTE MINIMUM
This chapter familiarized you with the “look and feel” of a C program, primarily 
the main() function. The key points from this chapter include:

 • A C function must have parentheses following its name. A C program consists 
of one or more functions. The main() function is always required. C executes 
main() before any other function.

 • Put lots of extra spacing in your C programs, to make them more readable.

 • Don’t put leading zeroes before integers unless the integer is zero.

 • If you use a character, enclose it in single quotes. Strings go inside quotation 
marks. Intege rs are whole numbers without decimal points. Floating-point 
numbers have decimal points.

03_9780789751980_ch02.indd   22 7/17/13   12:29 PM



WHAT DOES THIS DO? 
CLARIFYING YOUR CODE 
WITH COMMENTS
Your computer must be able to understand your programs. Because 

the computer is a dumb machine, you must be careful to spell C com-

mands exactly right and type them in the order you want them executed. 

However, people also read your programs. You will change your pro-

grams often, and if you write programs for a company, the company’s 

needs will change over time. You must ensure that your programs are 

understandable to people as well as to computers. Therefore, you should 

document your programs by explaining what they do.

I N  T H I S  C H A P T E R

3
• Commenting on your code

• Specifying comments

• Using whitespace

• Applying a second style for your comments

04_9780789751980_ch03.indd   23 7/17/13   12:29 PM



24 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Commenting on Your Code
Throughout a C program, you should add comments. Comments are messages 
scattered throughout your programs that explain what’s going on. If you write a 
program to calculate payroll, the program’s comments explain the gross pay cal-
culations, state tax calculations, federal tax calculations, social security calculations, 
deductions, and all the other calculations that are going on.

NOTE If you write the program and only you will use it, you 
don’t really need comments, right? Well, not exactly. C is a cryp-
tic programming language. Even if you write the program, you 
aren’t always able to follow it later—you might forget why you 
wrote a particular chunk of code, so a comment will help to deci-
pher matters.

TIP Add comments as you write your programs. Get in the 
habit now, because programmers rarely go back and add com-
ments later. When they must make a change later, programmers 
often lament about their program’s lack of comments.

Another advantage is gained when commenting as you write the 
program instead of waiting until after you finish. While writing pro-
grams, you often refer back to statements you wrote earlier in the 
process. Instead of reinterpreting C code you’ve already written, 
you can scan through your comments, finding sections of code that 
you need faster. If you didn’t comment, you would have to deci-
pher your C code every time you looked through a piece of it.

Program maintenance is the process of changing a program over time to fix hid-
den bugs and to adapt the program to a changing environment. If you write a 
payroll program for a company, that company could eventually change the way it 
does payroll (to go from biweekly to weekly, as an example), and you (or another 
programmer) will have to modify the payroll program to conform to the company’s 
new payroll procedures. Commenting speeds program maintenance. With com-
ments, you or another programmer can quickly scan through a program listing to 
find the areas that need changing.

Comments are not C commands. C ignores every comment in your program. 
Comments are for people, and the programming statements residing outside the 
comments are for the computer.

Consider the following C statement:

return ((s1 < s2) ? s1 : s2);

04_9780789751980_ch03.indd   24 7/17/13   12:29 PM



CHAPTER 3  WHAT DOES THIS DO? CLARIFYING YOUR CODE WITH COMMENTS 25

You don’t know C yet, but even if you did, this statement takes some study to fig-
ure out. Isn’t this better?

return ((s1 < s2) ? s1 : s2); /* Gets the smaller of 2 values */

The next section explains the syntax of comments, but for now, you can see that 
the message between the /* and the */ is a comment.

The closer a comment is to spoken language and the further a comment is from C 
code, the better the comment is. Don’t write a comment just for the sake of com-
menting. The following statement’s comment is useless:

printf("Payroll");  /* Prints the word "Payroll" */

WARNING You don’t know C yet, and you still don’t need 
the preceding line’s comment! Redundant comments are a waste 
of your time, and they don’t add anything to programs. Add com-
ments to explain what is going on to people (including yourself) 
who might need to read your program.

Specifying Comments
C comments begin with /* and end with */. Comments can span several lines in 
a program, and they can go just about anywhere in a program. All of the following 
lines contain C comments:
/* This is a comment that happens to span two lines

before coming to an end */ 

/* This is a single-line comment */

for (i = 0; i < 25; i++)  /* Counts from 0 to 25 */

NOTE Notice that comments can go on lines by themselves 
or before or after programming statements. The choice of place-
ment depends on the length of the comment and the amount of 
code the comment describes.

The Draw Poker program in Appendix B, “The Draw Poker Program,” contains all 
kinds of comments. By reading through the comments in that program, you can 
get an idea of what the program does without ever looking at the C code itself.

Don’t comment every line. Usually only every few lines need comments. Many 
programmers like to place a multiline comment before a section of code and then 
insert a few smaller comments on lines that need them. Here is a complete pro-
gram with different kinds of comments:

04_9780789751980_ch03.indd   25 7/17/13   12:29 PM



26 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

/* The first code listing from Chapter 3 of The Absolute Beginner's 

Guide to C

Teaching new programmer to create kick-butt code since 1994! */

/* A Dean Miller joint */

/* Filename Chapter3ex1.c */

/* Totals how much money will be spent on holiday gifts. */

#include <stdio.h>

main()

{

       float gift1, gift2, gift3, gift4, gift5; /* Variables to hold 

costs. */

       float total; /* Variable to hold total amount */

/*Asks for each gift amount */

printf("How much do you want to spend on your mom? ");

scanf(" %f", &gift1);

printf("How much do you want to spend on your dad? ");

scanf(" %f", &gift2);

printf("How much do you want to spend on your sister? ");

scanf(" %f", &gift3);

printf("How much do you want to spend on your brother? ");

scanf(" %f", &gift4);

printf("How much do you want to spend on your favorite ");

printf("C Programming author? ");

scanf(" %f", &gift5);

total = gift1+gift2+gift3+gift4+gift5; /* Computes total amount 

spent on gifts */

printf("\nThe total you will be spending on gifts is $%.2f", total);

return 0; /*Ends the program */

}

Many companies require that their programmers embed their own names in com-
ments at the top of programs they write. If changes need to be made to the pro-
gram later, the original programmer can be found to help. It’s also a good idea to 
include the filename that you use to save the program on disk at the beginning of 
a program so that you can find a program on disk when you run across a printed 
listing.

04_9780789751980_ch03.indd   26 7/17/13   12:29 PM



CHAPTER 3  WHAT DOES THIS DO? CLARIFYING YOUR CODE WITH COMMENTS 27

NOTE This book might comment too much in some places, 
especially in the beginning chapters. You are so unfamiliar with C 
that every little bit of explanation helps.

TIP For testing purposes, you might find it useful to com-
ment out a section of code by putting /* and */ around it. By 
doing this, you cause C to ignore that section of code, and you 
can concentrate on the piece of code you’re working on. Do not, 
however, comment out a section of code that already contains 
comments because you cannot embed one comment within 
another. The first */ that C runs across triggers the end of the 
comment you started. When C finds the next */ without a begin-
ning /*, you get an error.

Whitespace
Whitespace is the collection of spaces and blank lines you find in many programs. 
In a way, whitespace is more important than comments in making your programs 
readable. People need whitespace when looking through a C program because 
those programs are more readable than programs that run together too much. 
Consider the following program:
#include <stdio.h>

main(){float a, b;printf("How much of a bonus did you get? 

");scanf(" %f",

&a);b = .85  * a;printf("If you give 15 percent to charity, you will 

still have %.2f.", b);return 0;}

To a C compiler, this is a perfectly good C program. You might get a headache 
looking at it, however. Although the code is simple and it doesn’t take a lot of 
effort to figure out what is going on, the following program is much easier to deci-
pher, even though it has no comments:
#include <stdio.h>

main()

{

       float a, b;

       printf("How much of a bonus did you get? ");

       scanf(" %f", &a);

04_9780789751980_ch03.indd   27 7/17/13   12:29 PM



28 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

       b = .85  * a;

       printf("If you give 15 percent to charity, you will still ");

       printf("have %.2f.", b);

       return 0;

}

This program listing is identical to the previous program, except that this one 
includes whitespace and line breaks. The physical length of a program does not 
determine readability; the amount of whitespace does. (Of course, a few com-
ments would improve this program, too, but the purpose of this exercise is to 
show you the difference between no whitespace and good whitespace.)

NOTE You might be wondering why the first line of the 
squeezed program, the one with the #include, did not con-
tain code after the closing angle brace. After all, the point of 
unreadable code would seem to be made even more strong if 
the #include contained trailing code. Code::Blocks (and several 
other compilers) refuse to allow code after a #include (or any 
other statement that begins with a pound sign [#]).

A Second Style for Your Comments
Today’s C compilers support  another kind of comment that was originally devel-
oped for C++ programs. With its C99 release, the American National Standards 
Institute (ANSI) committee approved this new kind of comment, so you should be 
safe using it (unless you are using a really, really old computer and compiler!). The 
second style of comment begins with two slashes (//) and ends only at the end of 
the line.

Here is an example of the new style of comment:
// Another Code Example, just with a different commenting style

#include <stdio.h>

main()

{

       printf("I like these new comments!"); // A simple statement

}

Either style of comment works, so the code examples throughout this book take 
advantage of both. You should become familiar with both styles because each has 
its uses as you learn to write more complicated programs.

04_9780789751980_ch03.indd   28 7/17/13   12:29 PM



CHAPTER 3  WHAT DOES THIS DO? CLARIFYING YOUR CODE WITH COMMENTS 29

THE ABSOLUTE MINIMUM
You must add comments to your programs—not for computers, but for people. C 
programs can be cryptic, and comments eliminate lots of confusion. Key points to 
remember from this chapter include:

 • The three rules of programming are comment, comment, comment. Clarify 
your code with abundant comments.

 • For multiline comments, begin them with /*, and C considers everything after 
that a comment until it encounters a closing */.

 • For single-line comments, you can also use //. C ignores the rest of the line 
after that point.

 • Use whitespace and line breaks to make your programs easy to read.

04_9780789751980_ch03.indd   29 7/17/13   12:29 PM



This page intentionally left blank 



YOUR WORLD PREMIERE—
PUTTING YOUR PROGRAM’S 
RESULTS UP ON THE 
SCREEN
If neither you nor anybody else could see your program’s output, there 

would be little use for your program. Ultimately, you have to be able 

to view the results of a program. C’s primary means of output is the 

printf() function. No actual command performs output, but the 

printf() function is a part of every C compiler and one of the most 

used features of the language.

I N  T H I S  C H A P T E R

4
• Using printf()

• Printing strings

• Coding escape sequences

• Using conversion characters

• Putting it all together with a code example

05_9780789751980_ch04.indd   31 7/17/13   12:29 PM



32 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

How to Use printf()
In a nutshell, printf() produces output on your screen. As the sample code list-
ings in Chapters 2, “Writing Your First C Program,” and 3, “What Does This Do? 
Clarifying Your Code with Comments,” demonstrated, printf() sends charac-
ters, numbers, and words to the screen. There is a lot to printf(), but you don’t 
have to be an expert in all the printf() options (very few C programmers are) to 
use it for all your programs’ screen output.

The Format of printf()
The printf() function takes many forms, but when you get used to its format, 
printf() is easy to use. Here is the general format of printf():

printf(controlString [, data]);

Throughout this book, when you are introduced to a new command or function, 
you will see its basic format. The format is the general look of the statement. If 
something in a format appears in brackets, such as , data in the printf func-
tion just shown, that part of the statement is optional. You almost never type the 
brackets themselves. If brackets are required in the command, that is made clear 
in the text following the format. printf() requires a controlString, but the 
data following the controlString is optional.

WARNING printf() doesn’t actually send output to your 
screen, but it does send it to your computer’s standard output 
device. Most operating systems, including Windows, route the 
standard output to your screen unless you know enough to route 
the output elsewhere. Most of the time, you can ignore this stan-
dard output device stuff because you’ll almost always want output 
to go to the screen. Other C functions you will learn about later 
route output to your printer and disk drives.

NOTE You might be wondering why some of the words in 
the format appear in italics. It’s because they’re placeholders. 
A placeholder is a name, symbol, or formula that you supply. 
Placeholders are italicized in the format of functions and com-
mands to let you know that you should substitute something at 
that place in the command.

Here is an example of a printf():

printf("My favorite number is %d", 7);  // Prints My favorite number

                                        // is 7

05_9780789751980_ch04.indd   32 7/17/13   12:29 PM



CHAPTER 4  YOUR WORLD PREMIERE—PUTTING YOUR PROGRAM’S RESULTS UP ON 
THE SCREEN

33

Because every string in C must be enclosed in quotation marks (as mentioned in 
Chapter 2), the controlString must be in quotation marks. Anything follow-
ing the controlString is optional and is determined by the values you want 
printed.

NOTE Every C command and function needs a semicolon (;)
after it to let C know that the line is finished. Braces and the first 
lines of functions don’t need semicolons because nothing is exe-
cuting on those lines. All statements with printf() should end 
in a semicolon. You won’t see semicolons after main(), however, 
because you don’t explicitly tell C to execute main(). You do, 
however, tell C to execute printf() and many other functions. 
As you learn more about C, you’ll learn more about semicolon 
placement.

Printing Strings
String messages are the easiest type of data to print with printf(). You have to 
enclose only the string in quotation marks. The following printf() prints a mes-
sage on the screen:

printf("You are on your way to C mastery");

The message You are on your way to C mastery appears onscreen when 
the computer executes this statement.

NOTE The string You are on your way to C mastery 
is the controlString in this printf(). There is little control 
going on here—just output.

The following two printf() statements might not produce the output you 
expect:

printf("Write code");

printf("Learn C");

Here is what the two printf() statements produce:

Write codeLearn C

TIP C does not automatically move the cursor down to the 
next line when a printf() executes. You must insert an escape 
sequence in the controlString if you want C to go to the next 
line after a printf().

05_9780789751980_ch04.indd   33 7/17/13   12:29 PM



34 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Escape Sequences
C contains a lot of escape sequences, and you’ll use some of them in almost every 
program you write. Table 4.1 contains a list of some of the more popular escape 
sequences.

TABLE 4.1 Escape Sequences

Code Description

\n Newline

\a Alarm (the computer’s bell)

\b Backspace

\t Tab

\\ Backslash

\’ Single quote mark

\” Double quote mark

NOTE The term escape sequence sounds harder than it really 
is. An escape sequence is stored as a single character in C and 
produces the effect described in Table 4.1. When C sends '\a' 
to the screen, for example, the computer’s bell sounds instead of 
the characters \ and a actually being printed.

You will see a lot of escape sequences in printf() functions. Any time you want 
to “move down” to the next line when printing lines of text, you must type \n so 
that C produces a newline, which moves the blinking cursor down to the next line 
on the screen. The following printf() statements print their messages on sepa-
rate lines because of the \n at the end of the first one:

printf("Write code\n"); 

printf("Learn C");

TIP The \n could have been placed at the beginning of the 
second line, and the same output would have occurred. Because 
escape sequences are characters to C, you must enclose them in 
quotation marks so that C knows that the escape sequences are 
part of the string being printed. The following also produces two 
lines of output:

printf("Write code\nLearn C");

05_9780789751980_ch04.indd   34 7/17/13   12:29 PM



CHAPTER 4  YOUR WORLD PREMIERE—PUTTING YOUR PROGRAM’S RESULTS UP ON 
THE SCREEN

35

Double quotation marks begin and end a string, single quotation marks begin and 
end a character, and a backslash signals the start of an escape sequence, so they 
have their own escape sequences if you need to print them. \a rings your com-
puter’s bell, \b moves the cursor back a line, and \t causes the output to appear 
moved over a few spaces. There are other escape sequences, but for now, these 
are the ones you are most likely to use.

The following program listing demonstrates the use of all the escape sequences 
listed in Table 4.1. As always, your best bet is to try this program and then tweak 
it to something you’d like to try:
// Absolute Beginner's Guide to C, 3rd Edition

// Chapter 4 Example 1--Chapter4ex1.c

#include <stdio.h>

main()

{

    /* These three lines show you how to use the most popular Escape 

Sequences */

    printf("Column A\tColumn B\tColumn C");

    printf("\nMy Computer\'s Beep Sounds Like This: \a!\n");

    printf("\"Letz\bs fix that typo and then show the backslash ");

    printf("character \\\" she said\n");

    return 0;

}

After you enter, compile, and run this code, you get the following results:
Column A    Column B    Column C

My Computer's Beep Sounds Like This: !

"Let's fix that typo and then show the backslash character \" she 

said

05_9780789751980_ch04.indd   35 7/17/13   12:29 PM



36 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE You should understand a few things about the previous 
listing. First, you must always place #include <stdio.h> at the 
beginning of all programs that use the printf() function—it is 
defined in stdio.h, so if you fail to remember that line of code, 
you will get a compiler error because your program will not under-
stand how to execute printf(). Also, different C/C++ compilers 
might produce a different number of tabbed spaces for the \t 
escape sequence. Finally, it is important to note that using the \b 
escape sequence overwrites anything that was there. That’s why 
the 'z' does not appear in the output, but the 's' does.

Conversion Characters
When you print numbers and characters, you must tell C exactly how to print 
them. You indicate the format of numbers with conversion characters. Table 4.2 
lists a few of C’s most-used conversion characters.

TABLE 4.2 Conversion Characters

Conversion Character Description

%d Integer

%f Floating-point

%c Character

%s String

When you want to print a value inside a string, insert the appropriate conversion 
characters in the controlString. Then to the right of the controlString, list 
the value you want to be printed. Figure 4.1 is an example of how a printf() 
can print three numbers—an integer, a floating-point value, and another integer.

The output:

printf("%d roses cost %2f per %d\n", 24, 19.95, 12);

24 roses cost 19.95 per 12

FIGURE 4.1

printf() conversion characters determine how and where numbers print.

05_9780789751980_ch04.indd   36 7/17/13   12:29 PM



CHAPTER 4  YOUR WORLD PREMIERE—PUTTING YOUR PROGRAM’S RESULTS UP ON 
THE SCREEN

37

Strings and characters have their own conversion characters as well. Although you 
don’t need %s to print strings by themselves, you might need %s when printing 
strings combined with other data. The next printf() prints a different type of 
data value using each of the conversion characters:

printf("%s %d %f %c\n", "Sam", 14, -8.76, 'X');

This printf() produces this output:

Sam 14 -8.760000 X

NOTE The string Sam needs quotation marks, as do all 
strings, and the character X needs single quotation marks, as do 
all characters.

WARNING C is strangely specific when it comes to floating-
point numbers. Even though the -8.76 has only two decimal 
places, C insists on printing six decimal places.

You can control how C prints floating-point values by placing a period (.) and a 
number between the % and the f of the floating-point conversion character. The 
number you place determines the number of decimal places your floating-point 
number prints to. The following printf() produces four different-looking num-
bers, even though the same floating-point number is given:

printf("%f  %.3f  %.2f  %.1f", 4.5678, 4.5678, 4.5678, 4.5678);

C rounds the floating-point numbers to the number of decimal places specified in 
the %.f conversion character and produces this output:

4.567800  4.568  4.57  4.6

TIP You probably don’t see the value of the conversion charac-
ters at this point and think that you can just include the informa-
tion in the controlString. However, the conversion characters 
will mean a lot more when you learn about variables in the next 
chapter.

The printf()controlString controls exactly how your output will appear. The 
only reason two spaces appear between the numbers is that the controlString 
has two spaces between each %f.

05_9780789751980_ch04.indd   37 7/17/13   12:29 PM



38 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Putting It All Together with a Code Example
Consider the following program listing:
/* Absolute Beginner's Guide to C, 3rd Edition

 Chapter 4 Example 2--Chapter4ex1.c */

#include <stdio.h>

main()

{

    /* Here is some more code to help you with printf(), Escape 

Sequences, and Conversion Characters */

    printf("Quantity\tCost\tTotal\n");

    printf("%d\t\t$%.2f\t$%.2f\n", 3, 9.99, 29.97);

    printf("Too many spaces     \b\b\b\b can be fixed with the ");

    printf("\\%c Escape character\n", 'b');

    printf("\n\a\n\a\n\a\n\aSkip a few lines, and beep ");

    printf("a few beeps.\n\n\n");

    printf("%s %c.", "You are kicking butt learning", 'C');

    printf("You just finished chapter %d.\nYou have finished ", 4);

    printf("%.1f%c of the book.\n", 12.500, '%');

    printf("\n\nOne third equals %.2f or ", 0.333333);

    printf("%.3f or %.4f or ", 0.333333, 0.333333);

    printf("%.5f or %.6f\n\n\n", 0.333333, 0.3333333);

    return 0;

}

Enter this code and compile and run the program. You get the output in Figure 4.2.

05_9780789751980_ch04.indd   38 7/18/13   8:26 AM



CHAPTER 4  YOUR WORLD PREMIERE—PUTTING YOUR PROGRAM’S RESULTS UP ON 
THE SCREEN

39

FIGURE 4.2

Output from the second listing of Chapter 4.

Notice that, because of the length of the word Quantity, the second line needed 
two tabs to fit the cost of the item under the Cost heading. You might not need 
this—you will just need to test your code to better understand how many spaces 
the tab escape sequence moves your cursor. Sometimes skipping one line isn’t 
enough, but luckily, you can place multiple \n characters to jump down as many 
lines as you want. Finally, seeing that the % sign is a big part of conversion charac-
ters, you cannot put one in your controlString and expect it to print. So if you 
need to print a percent sign on the screen, use the %c conversion character and 
place it that way.

05_9780789751980_ch04.indd   39 7/17/13   12:29 PM



40 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The programs you write must be able to communicate with the user sitting at the 
keyboard. The printf() function sends data to the screen. Key points from this 
chapter to remember include:

 • Every printf() requires a control string that determines how your data will 
look when printed.

 • Don’t expect C to know how to format your data automatically. You must use 
conversion characters.

 • Use escape sequences to print newlines, tabs, quotes, and backslashes, and to 
beep the computer as well.

 • Unless you want your floating-point numbers to print to six places after the 
decimal point, use the %f conversion character’s decimal control.

05_9780789751980_ch04.indd   40 7/17/13   12:29 PM



ADDING VARIABLES TO 
YOUR PROGRAMS
No doubt you’ve heard that computers process data. Somehow you’ve 

got to have a way to store that data. In C, as in most programming lan-

guages, you store data in variables. A variable is nothing more than a box 

in your computer’s memory that holds a number or a character. Chapter 

2, “Writing Your First C Program,” explained the different types of data: 

characters, strings, integers, and floating points. This chapter explains 

how to store those types of data inside your programs.

I N  T H I S  C H A P T E R

5
• Identifying kinds of variables

• Naming variables

• Defining variables

• Storing data in variables

06_9780789751980_ch05.indd   41 7/17/13   12:29 PM



42 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Kinds of Variables
C has several different kinds of variables because there are several different kinds 
of data. Not just any variable will hold just any piece of data. Only integer vari-
ables can hold integer data, only floating-point variables can hold floating-point 
data, and so on.

NOTE Throughout this chapter, think of variables inside your 
computer as acting like post office boxes in a post office. Post 
office boxes vary in size and have unique numbers that label each 
one. Your C program’s variables vary in size, depending on the 
kind of data they hold, and each variable has a unique name that 
differentiates it from other variables.

The data you learned about in Chapter 2 is called literal data (or sometimes con-
stant data). Specific numbers and letters don’t change. The number 2 and the char-
acter 'x' are always 2 and 'x'. A lot of data you work with—such as age, salary, 
and weight—changes. If you were writing a payroll program, you would need a way 
to store changing pieces of data. Variables come to the rescue. Variables are little 
more than boxes in memory that hold values that can change over time.

Many types of variables exist. Table 5.1 lists some of the more common types. 
Notice that many of the variables have data types (character, integer, and floating 
point) similar to that of literal data. After all, you must have a place to store inte-
gers, and you do so in an integer variable.

TABLE 5.1 Some of the Most Common Types of C Variables

Name Description

char Holds character data such as ‘X’ and ‘^’

int  Holds integer data such as 1, -32, and 435125. Stores data 
between -2,147,483,648 and 2,147,483,647

float Holds floating-point data such as 25.6, -145.23, and .000005

double Holds extremely large or extremely small floating-point values

TIP In some older C compilers, int could hold only values 
between 32767 and -32768. If you wanted to use a larger inte-
ger, you needed to use the long int type. In most modern 
compilers, though, an int type can hold the same as a long 
int type. If you’d like to be sure with your compiler, you can use 
the sizeof operator, covered in Chapter 13, “A Bigger Bag of 
Tricks—Some More Operators for Your Programs.”

06_9780789751980_ch05.indd   42 7/17/13   12:29 PM



CHAPTER 5  ADDING VARIABLES TO YOUR PROGRAMS 43

WARNING You might notice that there are no string vari-
ables, although there are character string literals. C is one of the 
few programming languages that has no string variables, but as 
you’ll see in Chapter 6, “Adding Words to Your Programs,” you 
do have a way to store strings in variables.

The Name column in Table 5.1 lists the keywords needed when you create vari-
ables for programs. In other words, if you want an integer, you need to use the 
int keyword. Before completing your study of variables and jumping into using 
them, you need to know one more thing: how to name them.

Naming Variables
All variables have names, and because you are responsible for naming them, you 
must learn the naming rules. All variable names must be different; you can’t have 
two variables in the same program with the same name.

A variable can have from 1 to 31 characters in its name. Some compilers do allow 
longer names, but it’s better to stick with this limit, both for portability of code 
and to keep typing errors to a minimum. (After all, the longer the name you use, 
the greater the chance for a typo!) Your program’s variables must begin with a 
letter of the alphabet, but after that letter, variable names can have other letters, 
numbers, or an underscore in any combination. All of the following are valid vari-
able names:

myData pay94 age_limit amount QtlyIncome

TIP C lets you begin a variable name with an underscore, but 
you shouldn’t do so. Some of C’s built-in variables begin with 
an underscore, so there’s a chance you’ll overlap one of those if 
you name your variables starting with underscores. Take the safe 
route and always start your variable names with letters—I cannot 
underscore this point enough! (See what I did there?)

The following examples of variable names are not valid:

94Pay my Age lastname,firstname

You ought to be able to figure out why these variable names are not valid: The 
first one, 94Pay, begins with a number; the second variable name, my Age, con-
tains a space; and the third variable name, lastname,firstname, contains a 
special character (,).

06_9780789751980_ch05.indd   43 7/17/13   12:29 PM



44 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

WARNING Don’t name a variable with the same name as a 
function or a command. If you give a variable the same name as 
a command, your program won’t run; if you give a variable the 
same name as a function, you can’t use that same function name 
later in your program without causing an error.

Defining Variables
Before you use a variable, you have to define it. Variable definition (sometimes 
called variable declaration) is nothing more than letting C know you’ll need some 
variable space so it can reserve some for you. To define a variable, you only need 
to state its type, followed by a variable name. Here are the first few lines of a pro-
gram that defines some variables:
main()

{

       // My variables for the program

       char answer;

       int quantity;

       float price;

/* Rest of program would follow */

The sample code just presented has three variables: answer, quantity, and 
price. They can hold three different types of data: character data, integer data, 
and floating-point data. If the program didn’t define these variables, it wouldn’t be 
able to store data in the variables.

You can define more than one variable of the same data type on the same line. 
For example, if you wanted to define two character variables instead of just one, 
you could do so like this:
main()

{

       // My variables for the program

       char first_initial;

       char middle_initial;

/* Rest of program would follow. */

or like this:
main()

{

06_9780789751980_ch05.indd   44 7/17/13   12:29 PM



CHAPTER 5  ADDING VARIABLES TO YOUR PROGRAMS 45

       // My variables for the program

       char first_initial, middle_initial;

/* Rest of program would follow. */

TIP Most C variables are defined after an opening brace, 
such as the opening brace that follows a function name. These 
variables are called local variables. C also lets you create global 
variables by defining the variables before a function name, such 
as before main(). Local variables are almost always preferable 
to global variables. Chapter 30, “Organizing Your Programs with 
Functions,” addresses the differences between local and global 
variables, but for now, all programs stick with local variables.

Storing Data in Variables
The assignment operator puts values in variables. It’s a lot easier to use than it 
sounds. The assignment operator is simply the equals sign (=). The format of put-
ting data in variables looks like this:

variable = data;

The variable is the name of the variable where you want to store data. You 
must have defined the variable previously, as the preceding section explained. 
The data can be a number, character, or mathematical expression that results in a 
number. Here are examples of three assignment statements that assign values to 
the variables defined in the preceding section:
answer = 'B';

quantity = 14;

price = 7.95;

You also can store answers to expressions in variables:

price = 8.50 * .65;  // Gets price after 35% discount

You can even use other variables in the expression:

totalAmount = price * quantity;  /* Uses value from another variable 

*/

TIP The equals sign tells C this: Take whatever is on the right 
and stick it into the variable on the left. The equals sign kind of acts 
like a left-pointing arrow that says “That-a-way!” Oh, and never use 
commas in numbers, no matter how big the numbers are!

06_9780789751980_ch05.indd   45 7/17/13   12:29 PM



46 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Let’s use all this variable knowledge you’ve gained in a program. Open your edi-
tor, type the following program, compile it, and run it:
// Example program #1 from Chapter 5 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter5ex1.c

/* This is a sample program that lists three kids and their school 

supply needs, as well as cost to buy the supplies */

#include <stdio.h>

main()

{

    // Set up the variables, as well as define a few

    char firstInitial, middleInitial;

    int number_of_pencils;

    int number_of_notebooks;

    float pencils = 0.23;

    float notebooks = 2.89;

    float lunchbox = 4.99;

    //The information for the first child

    firstInitial = 'J';

    middleInitial = 'R';

    number_of_pencils = 7;

    number_of_notebooks = 4;

    printf("%c%c needs %d pencils, %d notebooks, and 1 lunchbox\n",

           firstInitial, middleInitial,number_of_pencils, 

           number_of_notebooks);

    printf("The total cost is $%.2f\n\n", number_of_pencils*pencils 

    + number_of_notebooks*notebooks + lunchbox);

06_9780789751980_ch05.indd   46 7/17/13   12:29 PM



CHAPTER 5  ADDING VARIABLES TO YOUR PROGRAMS 47

    //The information for the second child

    firstInitial = 'A';

    middleInitial = 'J';

    number_of_pencils = 10;

    number_of_notebooks = 3;

    printf("%c%c needs %d pencils, %d notebooks, and 1 lunchbox\n",

           firstInitial, middleInitial,number_of_pencils, 

           number_of_notebooks);

    printf("The total cost is $%.2f\n\n", number_of_pencils*pencils 

    + number_of_notebooks*notebooks + lunchbox);

    //The information for the third child

    firstInitial = 'M';

    middleInitial = 'T';

    number_of_pencils = 9;

    number_of_notebooks = 2;

    printf("%c%c needs %d pencils, %d notebooks, and 1 lunchbox\n",

           firstInitial, middleInitial,number_of_pencils, 

           number_of_notebooks);

    printf("The total cost is $%.2f\n",

number_of_pencils*pencils + number_of_notebooks*notebooks + 

lunchbox);

    return 0;

    }

This program gives examples of naming and defining different types of variables, 
as well as assigning values to each. It’s important to note that you can reuse a vari-
able by just assigning a new value to the variable. You might be wondering, why 
keep using and reusing variables if you are just going to change the value within 
the code itself? Why not just skip the variables and use the values in their place? 
The value of variables will become more apparent after Chapter 8, “Interacting 
with Users,” and you can get information from the user for these variables.

06_9780789751980_ch05.indd   47 7/17/13   12:29 PM



48 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The Draw Poker program in Appendix B, “The Draw Poker Program,” must keep 
track of a lot of things, and many variables are used there. At the start of most of 
the program’s functions, you’ll see a place where variables are being defined.

TIP You can define variables and give them initial values at 
the same time. The previous program assigns values to the float 
variables pencil, notebook, and lunchbox when they are 
declared.

THE ABSOLUTE MINIMUM
This chapter covered the different types of variables in C. Because there are differ-
ent kinds of data, C has different variable kinds to hold that data. Key points from 
this chapter include:

 • Learn how to name variables because almost all of your programs will use 
variables.

 • Always define variables before you use them

 • Don’t mix data types and variable types—you will get the wrong results if you 
do.

 • If needed, you can define more than one variable on the same line.

 • Don’t use a comma in a number. Enter the figure 100,000 as 100000, not 
100,000.

 • When storing values in variables, use the equals sign (=), also called the 
assignment operator.

06_9780789751980_ch05.indd   48 7/17/13   12:29 PM



ADDING WORDS TO YOUR 
PROGRAMS
Although C doesn’t have string variables, you do have a way to store 

string data. This chapter explains how. You already know that you must 

enclose string data in quotation marks. Even a single character enclosed 

in quotation marks is a string. You also know how to print strings with 

printf().

The only task left is to see how to use a special type of character variable 

to hold string data so that your program can input, process, and output 

that string data.

I N  T H I S  C H A P T E R

6
• Understanding the string terminator

• Determining the length of strings

• Using character arrays: listing characters

• Initializing strings

07_9780789751980_ch06.indd   49 7/17/13   12:28 PM



50 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Understanding the String Terminator
C does the strangest thing to strings: It adds a zero to the end of every string. The 
zero at the end of strings has several names:

 • Null zero

 • Binary zero

 • String terminator

 • ASCII 0

 • \0

WARNING About the only thing you don’t call the string-
terminating zero is zero! C programmers use the special names 
for the string-terminating zero so that you’ll know that a regular 
numeric zero or a character '0' is not being used at the end 
of the string; only the special null zero appears at the end of a 
string.

C marks the end of all strings with the string-terminating zero. You never have 
to do anything special when entering a string literal such as "My name is 
Julie." C automatically adds the null zero. You’ll never see the null zero, but it 
is there. In memory, C knows when it gets to the end of a string only when it finds 
the null zero.

NOTE Appendix A, “The ASCII Table,” contains an ASCII 
table (first mentioned in Chapter 2, “Writing Your First C 
Program”). The very first entry is labeled null, and the ASCII num-
ber for null is 0. Look further down at ASCII 48, and you’ll see a 
0. ASCII 48 is the character '0', whereas the first ASCII value is 
the null zero. C puts the null zero at the end of strings. Even the 
string "I am 20" ends in an ASCII 0 directly after the character 
0 in 20.

The string terminator is sometimes called \0 (backslash zero) because you can 
represent the null zero by enclosing \0 in single quotes. Therefore, '0' is the char-
acter zero, and '\0' is the string terminator. (Remember the escape sequences 
covered in Chapter 4, “Your World Premiere—Putting Your Program’s Results Up 
on the Screen,” that were also single characters represented by two characters—
a backslash followed by a letter or another character. Now you have a backslash 
number to add to the collection.)

07_9780789751980_ch06.indd   50 7/18/13   8:29 AM



CHAPTER 6  ADDING WORDS TO YOUR PROGRAMS 51

Figure 6.1 shows how the string "Crazy" is stored in memory. As you can see, it 
takes 6 bytes (a byte is a single memory location) to store the string, even though 
the string has only five letters. The null zero that is part of the string "Crazy" 
takes one of those six memory locations.

String terminator

Memory

c r a z y \0

FIGURE 6.1

A string always ends with a null zero in memory.

The Length of Strings
The length of a string is always the number of characters up to, but not including, 
the null zero. Sometimes you will need to find the length of a string. The null zero 
is never counted when determining the length of a string. Even though the null 
zero must terminate the string (so that C knows where the string ends), the null 
zero is not part of the string length.

Given the definition of the string length, the following strings all have lengths of 
nine characters:
Wednesday

August 10

I am here

When counting the length of strings, remember that you must account for every 
space. So although the second string has eight letters and numbers, as well as a 
space in the middle, and the third string has seven letters, as well as two spaces 
in the middle, are all considered nine-character strings. If you chose to put three 
spaces between August and 10 in the middle example, it would become an 
11-character string.

WARNING The second string’s length doesn’t end at the 0 
in 10 because the 0 in 10 isn’t a null zero; it’s a character zero.

07_9780789751980_ch06.indd   51 7/17/13   12:28 PM



52 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP All single characters of data have a length of 1. Therefore, 
both 'X' and "X" have lengths of one, but the "X" consumes 
two characters of memory because of its null zero. Any time you 
see a string literal enclosed in quotation marks (as they all must 
be), picture in your mind that terminating null zero at the end of 
that string in memory.

Character Arrays: Lists of Characters
Character arrays hold strings in memory. An array is a special type of variable 
that you’ll hear much more about in upcoming chapters. All the data types—int, 
float, char, and the rest—have corresponding array types. An array is nothing 
more than a list of variables of the same data type.

Before you use a character array to hold a string, you must tell C that you need a 
character array in the same place you would tell C that you need any other kind of 
variable. Use brackets ([ and ]) after the array name, along with a number indicat-
ing the maximum number of characters the string will hold.

An example is worth a thousand words. If you needed a place to hold month 
names, you could define a character array called month like this:

char month[10];  /* Defines a character array */

TIP Array definitions are easy. Take away the 10 and the 
brackets, and you have a regular character variable. Adding the 
brackets with the 10 tells C that you need 10 character variables, 
each following the other in a list named month.

The reason 10 was used when defining the array is that the longest month name, 
September, has nine characters. The tenth character is for, you guessed it, the 
null zero.

TIP You always have to reserve enough character array space 
to hold the longest string you will need to hold, plus the string 
terminator. You can define more array characters than needed, 
but not fewer than you need.

If you want, you can store a string value in the array at the same time you define 
the array:

char month[10] = "January";  /* Defines a character array */

07_9780789751980_ch06.indd   52 7/17/13   12:28 PM



CHAPTER 6  ADDING WORDS TO YOUR PROGRAMS 53

Figure 6.2 shows you what this array looks like. Because nothing was put in the 
last two places of the array (January takes only seven characters plus an eighth 
place for the null zero), you don’t know what’s in the last two places. (Some com-
pilers, however, fill the unused elements with zeroes to kind of empty the rest of 
the string.)

String terminator

month

J a n u a r y \0 ? ?

[0][1][2][3][4][5][6][7][8][9]

subscripts

FIGURE 6.2

Defining and initializing an array named month that holds string data.

Each individual piece of an array is called an element. The month array has 10 ele-
ments. You can distinguish between them with subscripts. Subscripts are numbers 
that you specify inside brackets that refer to each of the array elements.

All array subscripts begin with 0. As Figure 6.2 shows, the first element in the 
month array is called month[0]. The last is called month[9] because there are 
10 elements altogether, and when you begin at 0, the last is 9.

Each element in a character array is a character. The combination of characters—
the array or list of characters—holds the entire string. If you wanted to, you could 
change the contents of the array from January to March one element at a time, 
like this:
Month[0] = 'M';

Month[1] = 'a';

Month[2] = 'r';

Month[3] = 'c';

Month[4] = 'h';

Month[5] = '\0'; //You must add this

It is vital that you insert the null zero at the end of the string. If you don’t, the 
month array would still have a null zero three places later at Month[7]; when you 
attempted to print the string, you would get this:

Marchry

07_9780789751980_ch06.indd   53 7/17/13   12:28 PM



54 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP Printing strings in arrays is easy. You use the %s conver-
sion character:

printf("The month is %s", month);

If you define an array and initialize the array at the same time, you don’t have to 
put the number in brackets. Both of the following do exactly the same thing:
char month[8] = "January";

char month[] = "January";

In the second example, C counts the number of characters in January and adds 
one for the null zero. You can’t store a string larger than eight characters later, 
however. If you want to defi ne a string’s character array and initialize it but leave 
extra padding for a longer string later, you would do this:

char month[25] = "January";  /* Leaves room for longer strings */

Initializing Strings
You don’t want to initialize a string one character at a time, as done in the preced-
ing section. However, unlike with regular nonarray variables, you can’t assign a 
new string to the array like this:

month = "April";  /* NOT allowed */

You can assign a string to a month with the equals sign only at the time you define 
the string. If later in the program you want to put a new string into the array, you 
must either assign it one character at a time or use C’s strcpy() (string copy) 
function that comes with your C compiler. The following statement assigns a new 
string to the month:

strcpy(month, "April");  /* Puts new string in month array */

NOTE In your programs that use strcpy(), you must put 
this line after the #include <stdio.h>:

#include <string.h>

TIP Don’t worry: strcpy() automatically adds a null zero to 
the end of the string it creates.

Now let’s take everything we’ve covered in this chapter and put it to use in a full 
program. Again, it’s time to fire up your editor, enter some code, and compile and 
run the resulting program:

07_9780789751980_ch06.indd   54 7/17/13   12:28 PM



CHAPTER 6  ADDING WORDS TO YOUR PROGRAMS 55

// Example program #1 from Chapter 6 of 

// Absolute Beginner's Guide to C, 3rd Edition

// File Chapter6ex1.c

// This program pairs three kids with their favorite superhero

#include <stdio.h>

#include <string.h>

main()

{

char Kid1[12];                

// Kid1 can hold an 11-character name

// Kid2 will be 7 characters (Maddie plus null 0)

char Kid2[] = "Maddie";

// Kid3 is also 7 characters, but specifically defined

char Kid3[7] = "Andrew";

// Hero1 will be 7 characters (adding null 0!)

char Hero1 = "Batman";

// Hero2 will have extra room just in case

char Hero2[34] = "Spiderman";

char Hero3[25];

    Kid1[0] = 'K';  //Kid1 is being defined character-by-character

    Kid1[1] = 'a';  //Not efficient, but it does work

    Kid1[2] = 't';

    Kid1[3] = 'i';

    Kid1[4] = 'e';

    Kid1[5] = '\0';  // Never forget the null 0 so C knows when the 

                     // string ends

    strcpy(Hero3, "The Incredible Hulk");

    printf("%s\'s favorite hero is %s.\n", Kid1, Hero1);

    printf("%s\'s favorite hero is %s.\n", Kid2, Hero2);

    printf("%s\'s favorite hero is %s.\n", Kid3, Hero3);

    return 0;

}

07_9780789751980_ch06.indd   55 7/17/13   12:28 PM



56 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

As with the program that ended Chapter 5, “Adding Variables to Your Program,” 
you might be saying, why go through all the trouble of having these variables 
when you could just put the names and strings right in the printf() statements? 
Again, the value of these variables will become more apparent after Chapter 8, 
“Interacting with Users,” when you learn to get information from users.

You were already using #include to add the <stdio.h> file to all your programs 
that use printf() (as well as other common functions that you will soon be adding 
to your programming toolbox). Now you have a second header file, <string.h>, 
to #include as well. The next chapter covers #include in more detail.

To remind you of the different methods of declaring and initializing string variables, 
the kid and hero variables are each defined differently. For a fun exercise, com-
ment out the strcpy line to see what your program prints on the screen when 
Hero3 is used in a printf() without having been initialized. My output was a 
bizarre collection of characters—those were already sitting in the space that became 
that variable, so if you don’t put anything in it, you’ll get whatever is there now.

THE ABSOLUTE MINIMUM
If you need to store words, you need to use character arrays; C does not support 
a string data type. Key points from this chapter include:

 • Store strings in character arrays, but reserve enough array elements to hold 
the longest string you’ll ever store in that array.

 • Don’t forget that strings must end with a terminating zero.

 • When writing to your array, remember that the subscripts begin at 0, not 1.

 • There are three ways to place a string in a character array: You can initialize it 
at the time you define the array, you can assign one element at a time, or you 
can use the strcpy() function.

 • If you use the strcpy() function in your programs, remember to add 
#include <string.h> to the beginning of your program.

07_9780789751980_ch06.indd   56 7/17/13   12:28 PM



MAKING YOUR PROGRAMS 
MORE POWERFUL WITH 
#include AND #define
Two types of lines you see in many C programs are not C commands 

at all. They are preprocessor directives. A preprocessor directive always 

begins with a pound sign (#). Preprocessor directives don’t cause any-

thing to happen at runtime (when you run your program). Instead, they 

work during the compiling of your program.

These preprocessor directives are used most often:

 • #include

 • #define

Every sample program you have written so far has used #include. This 

chapter finally takes the secret out of that mysterious preprocessor directive.

I N  T H I S  C H A P T E R

7
• Including files

• Placing #include directives

• Defining constants

• Building a header file and program

08_9780789751980_ch07.indd   57 7/17/13   12:28 PM



58 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Including Files
#include has two formats, which are almost identical:

#include <filename>

and

#include "filename"

Figure 7.1 shows what #include does. It’s nothing more than a file merge 
command. Right before your program is compiled, the #include statement is 
replaced with the contents of the filename specified after #include. The filename 
can be stated in either uppercase or lowercase letters, as long as your operating 
system allows for either in filenames. For example, my Windows XP implementa-
tion of Code::Blocks does not distinguish between uppercase and lowercase let-
ters in filenames, but UNIX does. If your file is named myFile.txt, you might be 
able to use any of the following #include directives:

#include "MYFILE.TXT" 

#include "myfile.txt" 

#include "myFile.txt"

However, UNIX allows only this:

#include "myFile.txt"

Here's what you wrote:

Your source file:

Here's what the compiler sees:

The file named addr.h:

           :
/* Part of a C program */
age = 31;
printf("I am %d years old" , age);
#include "addr.h"
printf("That's my address");
/*Rest of program follows */
           :

printf("\n6104 E. Oak\n");
printf("St. Paul, MN\n");
printf("           54245\n");

BEFORE

           :
/* Part of a C program */
age = 31;
printf("I am %d years old" , age);
printf("\n6104 E. Oak\n");
printf("St. Paul, MN\n");
printf("           54245\n");
printf("That's my address");
/*Rest of program follows */
           :

AFTER

FIGURE 7.1

#include inserts a disk file into the middle of another file.

08_9780789751980_ch07.indd   58 7/17/13   12:28 PM



CHAPTER 7  MAKING YOUR PROGRAMS MORE POWERFUL WITH #INCLUDE AND #DEFINE 59

NOTE When you’ve used a word processor, you might have 
used an #include type of command if you merged a file stored 
on disk into the middle of the file you were editing.

When you install your compiler, the installation program sets up a separate loca-
tion on your disk (in a directory) for various #include files that come with your 
compiler. When you want to use one of these built-in #include files, use the 
#include format with the angled brackets, < and >.

WARNING How do you know when to use a built-in 
#include file? Good question! All built-in functions, such as 
printf(), have corresponding #include files. When this book 
describes a built-in function, it also tells you exactly which file to 
include.

You’ve already used two built-in functions in your programs: printf() and 
strcpy(). (main() is not a built-in C function; it is a function you must supply.) 
As a reminder, the #include file for printf() is stdio.h (which stands for 
standard I/O), and the #include file for the strcpy() function is string.h.

Almost every complete program listing in this book contains the following prepro-
cessor directive:

#include <stdio.h>

That’s because almost every program in this book uses printf(). Chapter 6, 
“Adding Words to Your Program,” told you that whenever you use the strcpy() 
function, you need to include string.h.

TIP The file you include is called a header file. That’s why most 
included files end in the extension .h.

When you write your own header files, use the second form of the preprocessor 
directive, the one that has quotation marks. When you use quotation marks, C first 
searches the disk directory in which your program is stored and then searches the 
built-in #include directory. Because of the search order, you can write your own 
header files and give them the same name as those built into C, and yours will be 
used instead of C’s.

WARNING If you write your own header files, don’t put 
them with C’s built-in #include file directory. Leave C’s supplied 
header files intact. There is rarely a reason to override C’s head-
ers, but you might want to add some headers of your own.

08_9780789751980_ch07.indd   59 7/17/13   12:28 PM



60 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

You might write your own header files when you have program statements that 
you frequently use in many programs. Instead of typing them in every program, 
you can put them in a file in your program directory and use the #include direc-
tive with the file where you want to use the statements.

Placing #include Directives
The header files you add to your programs with #include are nothing more 
than text files that contain C code. You will learn much more about the contents 
of header files later; for now, understand that a header file does two things. The 
built-in header files help C properly execute built-in functions. The header files 
you write often contain code that you want to place in more than one file.

TIP It’s best to put your #include directives before 
main().

NOTE The Draw Poker program in Appendix B, “The Draw 
Poker Program,” includes several header files because it uses 
lots of built-in functions. Notice the placement of the #include 
statements; they come before main().

Defining Constants
The #define preprocessor directive defines constants. A C constant is really the 
same thing as a literal. You learned in Chapter 2, ”Writing Your First C Program,” 
that a literal is a data value that doesn’t change, like the number 4 or the string "C 
programming". The #define preprocessor directive lets you give names to liter-
als. When you give a name to a literal, the named literal is known in C terminology 
as a named constant or a defined constant.

WARNING In Chapter 5, “Adding Variables to Your 
Programs,” you learned how to define variables by specifying 
their data types and giving them a name and an initial value. 
Constants that you define with #define are not variables, even 
though they sometimes look like variables when they are used.

Here is the format of the #define directive:

#define CONSTANT constantDefinition

As with most things in C, using defined constants is easier than the format leads 
you to believe. Here are some sample #define directives:

08_9780789751980_ch07.indd   60 7/17/13   12:28 PM



CHAPTER 7  MAKING YOUR PROGRAMS MORE POWERFUL WITH #INCLUDE AND #DEFINE 61

#define AGELIMIT 21

#define MYNAME "Paula Holt"

#define PI 3.14159

In a nutshell, here’s what #define tells C: Every place in the program that the 
CONSTANT appears, replace it with the constantDefinition. The first #define 
just shown instructs C to find every occurrence of the word AGELIMIT and replace 
it with a 21. Therefore, if this statement appeared somewhere in the program after 
the #define:

if (employeeAge < AGELIMIT)

the compiler acts as if you typed this:

if (employeeAge < 21)

even though you didn’t.

TIP Use uppercase letters for the defined con stant name. This 
is the one exception in C when uppercase is not only used, but 
recommended. Because defined constants are not variables, the 
uppercase lets you glance through a program and tell at a glance 
what is a variable and what is a constant.

Assuming that you have previously defined the constant PI, the uppercase letters 
help keep you from doing something like this in the middle of the program:

PI = 544.34;  /* Not allowed */

As long as you keep defined constant names in upper case, you will know not to 
change them because they are constants.

Defined constants are good for naming values that might need to be changed 
between program runs. For example, if you didn’t use a defined constant for 
AGELIMIT, but instead used an actual age limit value such as 21 throughout a pro-
gram, if that age limit changed, finding and changing every single 21 would be diffi-
cult. If you had used a defined constant at the top of the program and the age limit 
changed, you’d only need to change the #define statement to something like this:

#define AGELIMIT 18

The #define directive is not a C command. As with #include, C handles your 
#define statements before your program is compiled. Therefore, if you defined 
PI as 3.14159 and you used PI throughout a program in which you needed the 
value of the mathematical pi (π), the C compiler would think you typed 3.14159 
throughout the program when you really typed PI. PI is easier to remember (and 
helps eliminate typing mistakes) and is clearer to the purpose of the constant.

08_9780789751980_ch07.indd   61 7/17/13   12:28 PM



62 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

As long as you define a constant with #define before main() appears, the 
entire program will know about the constant. Therefore, if you defined PI to be 
the value 3.14159 before main(), you could use PI throughout main() and 
any other functions you write that follow main(), and the compiler would know to 
replace PI with 3.14159 each time before compiling your program.

Building a Header File and Program
The best way to ensure that you understand header files and defined constants is 
to write a program that uses both. So fire up your editor and let’s get typing!

First, you create your first header file:
// Example header program #1 from Chapter 7 of Absolute Beginner's 

// Guide to C, 3rd Edition

// File Chapter7ex1.h

// If you have certain values that will not change (or only change 

// rarely)

// you can set them with #DEFINE statements (so you can change them 

// as needed)

// If you plan on using them in several programs, you can place them 

// in a header file

#define KIDS 3

#define FAMILY "The Peytons"

#define MORTGAGE_RATE 5.15

When you type a header file and then save it, you need to add the .h to the end 
of the file to make it clear to your compiler that it is a header file, not a program. 
Most editors automatically add a .c to the end of your programs if you do not 
specify a specific extension.

Now, this is an overly simplistic header file with only a few constants set with the , 
statement. These are excellent examples of constants that are unlikely to change, 
but if they do change, it would be so much better to make the change in one 
place instead of having to change hundreds, if not thousands, of lines of code. If 
you create programs for family planning, budgeting, and holiday shopping, and 
you decide to have (or accidentally have) a fourth child, you can make the change 
in this header file, and then when you recompile all programs that use it, the 

08_9780789751980_ch07.indd   62 7/17/13   12:28 PM



CHAPTER 7  MAKING YOUR PROGRAMS MORE POWERFUL WITH #INCLUDE AND #DEFINE 63

change to 4 (or 5, if you’re lucky enough to have twins) will roll through all your 
code. A family name is unlikely to change, but maybe you refinance your house 
and get a new mortgage rate that changes budgeting and tax planning.

A header file will not help you until you include it in a program, so here is a simple 
piece of code that uses your newly created .h file:
// Example program #1 from Chapter 7 of Absolute Beginner's Guide to 

// C, 3rd Edition

// File Chapter7ex1.c

/* This is a sample program that lists three kids and their school 

supply needs, as well as cost to buy the supplies */

#include <stdio.h>

#include <string.h>

#include "Chapter7ex1.h"

main()

{

    int age;

    char childname[14] = "Thomas";

    printf("\n%s have %d kids.\n", FAMILY, KIDS);

    age = 11;

    printf("The oldest, %s, is %d.\n", childname, age);

    strcpy(childname, "Christopher");

    age = 6;

    printf("The middle boy, %s, is %d.\n", childname, age);

    age = 3;

    strcpy(childname, "Benjamin");

    printf("The youngest, %s, is %d.\n", childname, age);

    return 0;

}

08_9780789751980_ch07.indd   63 7/17/13   12:28 PM



64 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Again, there isn’t much to this code. All it does is state that a family has three 
children and then names each child. I promise that, as you learn new commands, 
statements, functions, and operators in upcoming chapters, your programs will 
get meatier. You might notice that one of the #define constants created in the 
header file, MORTGAGE_RATE, is not used in this sample program. You do not 
have to use every created constant if you include a header file in your program.

The program uses one variable, childname, for the name and one variable, 
age, for the age of three different children, with the information overwritten in 
each case. This is not the wisest choice—after all, there’s a good chance that if 
you write a program that needs the names of your kids, you’ll probably be using 
each name more than once. But in a program like this, it’s a good reminder that 
you can overwrite and change variable names, but not constants created with a 
#define statement.

THE ABSOLUTE MINIMUM
C’s preprocessor directives make C see code that you didn’t actually type. The key 
concepts from this chapter include:

 • Always add the proper header files, using the #include directive when using 
built-in functions. Use angled brackets (< and >) around the included filename 
when including compiler-supplied header files, and be sure to place the 
#include statements for these files before main().

 • Use quotation marks (") around the included filename when including your 
own header files that you’ve stored in your source code’s directory. You can 
insert your own header files with #include wherever you want the code 
inserted.

 • Use uppercase characters in all defined constant names so that you can 
distinguish them from regular variable names.

08_9780789751980_ch07.indd   64 7/17/13   12:28 PM



INTERACTING WITH USERS
printf() sends data to the screen. The scanf() function gets data 

from the keyboard. You must have a way to get data from your user. You 

can’t always assign data values using assignment statements. For exam-

ple, if you were writing a movie theater program for use throughout the 

country, you couldn’t assign the cost of a ticket to a variable using the 

equals sign in your program because every theater’s ticket price could 

differ. Instead, you would have to ask the user of the program in each 

theater location how much a ticket costs before computing a charge.

At first glance, the scanf() function might seem confusing, but it is so 

important to learn, to increase the power of your programs through user 

interactivity. To a beginner, scanf() makes little sense, but despite its 

strange format, it is the easiest function to use for input at this point in 

the book because of its close ties to the printf() function. Practice 

with scanf() will make your programs perfect!

I N  T H I S  C H A P T E R

8
• Looking at scanf()

• Prompting for scanf()

• Solving problems with scanf()

09_9780789751980_ch08.indd   65 7/17/13   12:28 PM



66 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Looking at scanf()
scanf() is a built-in C function that comes with all C compilers. Its header file is 
the same as printf() (stdio.h), so you don’t have to worry about including an 
additional header file for scanf(). scanf() fills variables with values typed by 
the user.

scanf() is fairly easy if you know printf(). scanf() looks a lot like printf() 
because scanf() uses conversion codes such as %s and %d. scanf() is the 
mirror-image function of printf(). Often you will write programs that ask the 
user for values with a printf() and get those values with scanf(). Here is the 
format of scanf():

scanf(controlString [, data]);

When your program gets to scanf(), C stops and waits for the user to type 
values. The variables listed inside scanf() (following the controlString) will 
accept whatever values the user types. scanf() quits when the user presses 
Enter after typing values.

Even though scanf() uses the same conversion characters as printf(), never 
specify escape sequences such as \n, \a, or \t. Escape sequences confuse 
scanf(). scanf() quits getting values from the user when the user presses 
Enter, so you don’t ever specify the \n.

Prompting for scanf()
Almost every scanf() you write should be preceded with printf(). If you don’t 
start with a printf(), the program stops and waits for input, and the user has no 
idea what to do. For example, if you need to get an amount from the user, you 
would put a printf() function like this before scanf():

printf("What is the amount? ");  /* Prompt */ /* A scanf() would 
follow */

A printf() before a scanf() sends a prompt to the user. If you don’t prompt 
the user for the value or values you want, the user has no way of knowing what 
values should be typed. Generally, the printf() requests the data from the user, 
and the scanf() gets the data that the user types.

Let’s write a program with a few simple scanf() statements—after all, it is the 
best way to learn:
// Example program #1 from Chapter 8 of Absolute Beginner's Guide to 

// C, 3rd Edition

// File Chapter8ex1.c

09_9780789751980_ch08.indd   66 7/17/13   12:28 PM



CHAPTER 8  INTERACTING WITH USERS 67

/* This is a sample program that asks users for some basic data and 

prints it on screen in order to show what was entered */

#include <stdio.h>

main()

{

    // Set up the variables that scanf will fill

    char firstInitial;

    char lastInitial;

    int age;

    int favorite_number;

    printf("What letter does your first name begin with?\n");

    scanf(" %c", &firstInitial);

    printf("What letter does your last name begin with?\n");

    scanf(" %c", &lastInitial);

    printf("How old are you?\n");

    scanf(" %d", &age);

    printf("What is your favorite number (integer only)?\n");

    scanf(" %d", &favorite_number);

    printf("\nYour intitials are %c.%c. and you are %d years old", 

firstInitial, lastInitial, age);

    printf("\nYour favorite number is %d.\n\n", favorite_number);

    return 0;

    }

09_9780789751980_ch08.indd   67 7/17/13   12:28 PM



68 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

So those scanf() statements are not so bad, right? Each one is partnered with 
a printf() statement to let the user know what to type. To see how confusing 
scanf() would be without a preceding printf() statement, comment out any 
of the printf() statements before a scanf(), and recompile and run the pro-
gram. You will find the prompt confusing, and you wrote the program! Think of 
how the user will feel.

The first two scanf() statements obtain character values (as you can tell from the 
%c conversion codes). The third scanf() gets an integer value from the keyboard 
and places it into a variable named age.

The variables firstInitial, lastInitial, and age will hold whatever the 
user types before pressing Enter. If the user types more than a single character in 
the first two examples, it can confuse the program and create problems for the 
later values.

Another point to notice about the scanf() statements is the spaces right before 
each %c or %d. The space isn’t always required here, but it never hurts, and it 
sometimes helps the input work better when you get numbers and characters in 
succession. Adding the extra space is a good habit to get into now while learning 
scanf().

Enough about all that. Let’s get to the most obvious scanf() problem: the 
ampersand (&) before the three variables. Guess what? scanf() requires that you 
put the ampersand before all variables, even though the ampersand is not part 
of the variable name! Do it, and scanf() works; leave off the ampersand, and 
scanf() won’t accept the user’s values into the variables.

TIP Make your leading printf() statement as descriptive as 
possible. In the last example, if you ask for only a favorite num-
ber, a user might enter a decimal instead of just a whole number. 
Who knows—maybe someone’s favorite number is 3.14159.

Problems with scanf()
As mentioned earlier in this chapter, scanf() is not the easiest function to use. 
One of the first problems with scanf() is that although the user must type 
exactly what scanf() expects, the user rarely does this. If the scanf() needs 
a floating-point value, but the user types a character, there is little you can do. 
The floating-point variable you supply will have bad data because a character is 
not a floating-point value.

09_9780789751980_ch08.indd   68 7/17/13   12:28 PM



CHAPTER 8  INTERACTING WITH USERS 69

For now, assume that the user does type what is needed. Chapter 18, “Increasing 
Your Program’s Output (and Input),” describes some ways to overcome problems 
brought on by scanf() (although modern-day C programmers often resort to 
complete data-entry routines they write, download, or purchase elsewhere that 
overcome C’s difficult data-entry ability).

An exception to the ampersand rule does exist. If you’re getting input into an 
array using %s, as happens when you ask users for a name to be stored in a char-
acter array, you do not use the ampersand.

The bottom-line rule is this: If you’re asking the user to type integers, floating 
points, characters, doubles, or any of the other single-variable combinations (long 
integers and so on), put an ampersand before the variable names in the scanf(). 
If you are asking the user for a string to input into a character array, don’t put the 
ampersand before the array name.

WARNING You also wouldn’t put the ampersand in front of 
pointer variables. Actually, an array is nothing more than a pointer 
variable, and that’s why the ampersand isn’t needed for arrays. 
We get to pointers later in this book, but if you’ve seen them in 
other languages, you know what I’m talking about. If you haven’t 
seen a pointer variable and you don’t know what this is all about, 
well, I promise you’ll get there soon! Seriously, you’ll fully under-
stand pointers and how they are like arrays after reading Chapter 
25, “Arrays and Pointers.”

There’s a problem with using scanf() to get character strings into character 
arrays that you need to know about now. scanf() stops reading string input at 
the first space. Therefore, you can get only a single word at a time with scanf(). 
If you must ask the user for more than one word, such as the user’s first and last 
name, use two scanf() statements (with their own printf() prompts) and store 
the two names in two character arrays.

The following program uses scanf() statements to ask the user for a floating 
point (the price of a pizza), a string (a pizza topping), and several integers (number 
of pizza slices and the month, day, and year). Notice that the string has no amper-
sand, but the other variables do. The program asks for only a one-word pizza top-
ping because scanf() isn’t capable of getting two words at once.

09_9780789751980_ch08.indd   69 7/17/13   12:28 PM



70 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

// Example program #2 from Chapter 8 of Absolute Beginner's Guide to 

// C, 3rd Edition

// File Chapter8ex2.c

/* This is a sample program that asks users for some basic data and 

prints it on screen in order to show what was entered */

#include <stdio.h>

main()

{

    char topping[24];

    int slices;

    int month, day, year;

    float cost;

// The first scanf will look for a floating-point variable, the cost 

// of a pizza

// If the user doesn't enter a $ before the cost, it could cause 

// problems

    printf("How much does a pizza cost in your area?");

    printf("enter as $XX.XX)\n");

    scanf(" $%f", &cost);

// The pizza topping is a string, so your scanf doesn't need an &

    printf("What is your favorite one-word pizza topping?\n");

    scanf(" %s", topping);

    printf("How many slices of %s pizza", topping);

    printf("can you eat in one sitting?\n");

    scanf(" %d", &slices);

09_9780789751980_ch08.indd   70 7/17/13   12:28 PM



CHAPTER 8  INTERACTING WITH USERS 71

    printf("What is today's date (enter it in XX/XX/XX format).\n");

    scanf(" %d/%d/%d", &month, &day, &year);

    printf("\n\nWhy not treat yourself to dinner on %d/%d/%d", 

           month, day, year);

    printf("\nand have %d slices of %s pizza!\n", slices, topping);

    printf("It will only cost you $%.2f!\n\n\n", cost);

    return (0);

}

The format and use of scanf() statements will become easier with practice. If 
the user wanted to enter a two-word topping, like Italian sausage, your program 
would need two scanf() statements to capture them and two variables to save 
the names. Later in the book, you learn some tricks to ask your users for multiple 
pieces of data instead of just one within a particular category.

Again, use your printf() statements to more effectively guide users to enter 
data in a format that your program needs. Try entering information incorrectly 
when running this program, such as leaving off the dollar sign on the pizza price 
or forgetting the slashes in the date, and you will see the problems you can create 
for your program.

TIP You can let the user type characters other than data val-
ues. For example, many times dates are entered with slashes 
or hyphens separating the day, month, and year, like this: 
03/05/95. You have to trust the user to type things just right. In 
the previous example, if the user doesn’t type in the dollar sign 
before the price of the pizza, the program will not function prop-
erly. The following scanf() that gets a date expects the user to 
type the date in mm/dd/yy format:

scanf(" %d/%d/%d", &month, &day, &year);

The user could type 02/28/14 or 11/22/13, but not June 
5th, 2013, because the scanf() is expecting something else.

09_9780789751980_ch08.indd   71 7/17/13   12:28 PM



72 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
This chapter’s goal was to teach you how to ask for and get answers from the user. 
Being able to process user input is an important part of any language. scanf() 
performs data entry—that is, scanf() gets the user’s input and stores that input 
in variables. Key concepts from this chapter include:

 • Use scanf() to get data from the user by way of the keyboard, and 
remember to include a control string to dictate how your data will look when 
input.

 • Before using a scanf(), use a printf() to prompt the user for the values 
and format you want.

 • Put an ampersand (&) before nonarray variables in a scanf().

 • Always add a leading space before the first control string character (as an 
example, " %d" contains a space before the %d) to ensure accurate character 
input.

09_9780789751980_ch08.indd   72 7/17/13   12:28 PM



CRUNCHING THE 
NUMBERS—LETTING C 
HANDLE MATH FOR YOU
Many people still break out in a cold sweat when they are told that they 

will have to do some math. Luckily, computers don’t mind math, and 

as long as you enter the numbers correctly, your C program will always 

do your math right with the use of operators. The term operators might 

conjure images of the ladies that used to help with long-distance phone 

calls, but we aren’t discussing those. These are C operators, which let you 

do math. You don’t have to be a math wizard to write programs that use 

math operators.

Not only should you learn to recognize math operators, but you should 

also learn how C orders math operators. C doesn’t always calculate from 

left to right. This chapter explains why.

I N  T H I S  C H A P T E R

9
• Handling basic arithmetic

• Understanding order of operators

• Breaking the rules with parentheses

• Using assignments everywhere

10_9780789751980_ch09.indd   73 7/17/13   12:28 PM



74 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Basic Arithmetic
A lot of C operators work exactly the way you expect them to. You use a plus sign 
(+) when you want to add, and you use a minus sign (-) when you want to sub-
tract. An expression includes one or more operators. C programmers often use 
math expressions on the right side of the assignment operator when filling vari-
ables with values, like this:

totalSales = localSales + internationalSales - salesReturns;

C computes the answer and then stores that answer in totalSales.

NOTE If you want to subtract a negative value, be sure to put 
a space between the minus signs, like this:

newValue = oldValue - -factor;

If you omit the space, C thinks you’re using another operator, 
--, called the decrement operator, described in Chapter 13, “A 
Bigger Bag of Tricks—Some More Operators for Your Programs.”

You can even put a math expression inside a printf():

printf("In 3 years, I'll be %d years old.\n", age + 3);

If you want to multiply and divide, you can do so by using the * and / symbols. 
The following statement assigns a value to a variable using multiplication and divi-
sion:

newFactor = fact * 1.2 / 0.5;

WARNING If you put integers on both sides of the division 
symbol (/), C computes the integer division result. Study the fol-
lowing program to get familiar with integer division and regular 
division. The comments explain the results calculated from the 
divisions, but you can always double-check by compiling the pro-
gram and running it yourself.

// Example program #1 from Chapter 9 of 

// Absolute Beginner's Guide to C, 3rd Edition

// File Chapter9ex1.c

/* This is a sample program that demonstrates math operators, and 

the different types of division. */

10_9780789751980_ch09.indd   74 7/17/13   12:28 PM



CHAPTER 9  CRUNCHING THE NUMBERS—LETTING C HANDLE MATH FOR YOU 75

#include <stdio.h>

main()

{

    // Two sets of equivalent variables, with one set 

    // floating-point and the other integer

    float a = 19.0;

    float b = 5.0;

    float floatAnswer;

    int x = 19;

    int y = 5;

    int intAnswer;

    // Using two float variables creates an answer of 3.8

    floatAnswer = a / b;

    printf("%.1f divided by %.1f equals %.1f\n", a, b, floatAnswer);

    floatAnswer = x /y; //Take 2 creates an answer of 3.0

    printf("%d divided by %d equals %.1f\n", x, y, floatAnswer);

    // This will also be 3, as it truncates and doesn't round up

    intAnswer = a / b;

    printf("%.1f divided by %.1f equals %d\n", a, b, intAnswer);

    intAnswer = x % y; // This calculates the remainder (4)

    printf("%d modulus (i.e. remainder of) %d equals %d", x, y,

    intAnswer);

    return 0;

    }

10_9780789751980_ch09.indd   75 7/17/13   12:28 PM



76 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The last math statement in this program might be new to you. If you need the 
remainder after integer division, use C’s modulus operator (%). Given the values 
just listed, the following statement puts a 4 in intAnswer:

ansMod = x % y;  /* 4 is the remainder of 19 / 5 */

You now know the three ways C divides values: regular division if a float is on 
either or both sides of the /, integer division if an integer is on both sides of the 
/, and  modulus if the % operator is used between two integers.

TIP You can’t use % between anything but integer data types.

The following short program computes the net sale price of tires:
// Example program #2 from Chapter 9 of Absolute Beginner's Guide to 

// C, 3rd Edition

// File Chapter9ex2.c

/* This program asks the user for a number of tires and price per 

tire. It then calculates a total price, adding sales tax. */

// If you find you use a sales tax rate that may change, use #define 

// to set it in one place

#include <stdio.h>

#define SALESTAX .07

main()

{

    // Variables for the number of tires purchased, price, 

    // a before-tax total, and a total cost

    // with tax

    int numTires;

    float tirePrice, beforeTax, netSales;

    /* Get the number of tires purchased and price per tire. */

    printf("How many tires did you purchase? ");

    scanf(" %d", &numTires);

    printf("What was the cost per tire (enter in $XX.XX format)? ");

10_9780789751980_ch09.indd   76 7/17/13   12:28 PM



CHAPTER 9  CRUNCHING THE NUMBERS—LETTING C HANDLE MATH FOR YOU 77

    scanf(" $%f", &tirePrice);

    /* Compute the price */

    beforeTax = tirePrice * numTires;

    netSales = beforeTax + (beforeTax * SALESTAX);

    printf("%You spent $%.2f on your tires\n\n\n", netSales);

    return 0;

    }

Here is a sample run of the program:
How many tires did you purchase? 4

What was the cost per tire (enter in $XX.XX format)? $84.99

You spent $363.76 on your tires

Order of Operators
As mentioned earlier in this chapter, C doesn’t always compute math operations in 
the order you expect. The following expression explains it in a nutshell:

ans = 5 + 2 * 3;  /* Puts 11 in ans */

If you thought that C would store 21 in ans, you’re reading the expression from 
left to right. However, C always computes multiplication before addition. It sounds 
crazy, but as long as you know the rules, you’ll be okay. C is following the order of 
operators table. C first multiplies 2 and 3 to get 6, and then adds 5 to get 11.

Table 9.1 lists the complete order of operators. (The table includes several opera-
tors you have yet to cover—don’t worry, you will learn their value throughout the 
book.) For each level, if your expression has more than one operator from the 
same level, C resolves them using the associativity direction listed. So if you do 
multiplication and division, C performs the operation that appears first when read-
ing left to right, and then moves on to the next operation. When it has completed 
a level, it moves down to the next level. As you can see in the table, *, /, and % 
appear before + and -. Therefore, if C sees an expression with a combination of 
these operators, it evaluates *, /, and % before computing + and -.

10_9780789751980_ch09.indd   77 7/17/13   12:28 PM



78 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TABLE 9.1 Order of Operators

Level Operator Associativity

1 () (parenthesis), [] (array element), Left to right
 . (structure member reference)

2 - (negative sign), ++ (increment), -- (decrement), & (address-of),  Right to left
 * (pointer indirection), sizeof(), ! (the not operator)

3 * (multiplication), / (division), % (modulus) Left to right

4 + (addition), - (subtraction) Left to right

5 < (less than), <= (less than or equal to) Left to right
 > (greater than), >= (greater than or equal to)

6 == (equal to), != (not equal to) Left to right

7 && (logical and) Left to right

8 || (logical or) Left to right

9 ? : (the conditional operator) Right to left

10 =, *=, /=, %=, +=, -= (assignment operators) Right to left

11 , (the comma operator) Left to right

Here is a difficult expression. All the variables and numbers are integers. See if you 
can figure out the answer by the way C would evaluate the expression:

ans = 5 + 2 * 4 / 2 % 3 + 10 - 3;  /* What is the answer? */

Figure 9.1 shows how to solve for the answer, 13.

ans = 5 + 2 * 4 / 2 % 3 + 10 - 3 

5 + 8 / 2 % 3 + 10 - 3

5 +  4  % 3 + 10 - 3

5 +   1  + 10 - 3

6  +  10  - 3

16 - 3

13

FIGURE 9.1

Solving the expression the way C would.

10_9780789751980_ch09.indd   78 7/17/13   12:28 PM



CHAPTER 9  CRUNCHING THE NUMBERS—LETTING C HANDLE MATH FOR YOU 79

TIP Don’t do too much at one time when evaluating such 
expressions for practice. As the figure shows, you should compute 
one operator at a time and then bring the rest of the expression 
down for the next round.

If an expression such as the one in Figure 9.1 contains more than one operator 
that sits on the same level in the order of operators table, you must use the third 
column, labeled Associativity, to determine how the operators are evaluated. In 
other words, because *, /, and % all reside on the same level, they were evalu-
ated from left to right, as dictated by the order of operators table’s Associativity 
column.

You might wonder why you have to learn this stuff. After all, doesn’t C do your math 
for you? The answer is “Yes, but….” C does your math, but you need to know how 
to set up your expressions properly. The classic reason is as follows: Suppose you 
want to compute the average of four variables. The following will not work:

avg = i + j + k + l / 4;  /* Will NOT compute average! */

The reason is simple when you understand the order of operators. C computes the 
division first, so l / 4 is evaluated first and then i, j, and k are added to that 
divided result. If you want to override the order of operators, as you would do in 
this case, you have to learn to use ample parentheses around expressions.

Break the Rules with Parentheses
If you need to override the order of operators, you can. As demonstrated in Table 
9.1, if you group an expression inside parentheses, C evaluates that expression 
before the others. Because the order of operators table shows parentheses before 
any of the other math operators, parentheses have top precedence, as the follow-
ing statement shows:

ans = (5 + 2) * 3;  /* Puts 21 in ans */

Even though multiplication is usually performed before addition, the parentheses 
force C to evaluate 5 + 2 first and then multiply the resulting 7 by 3. Therefore, 
if you want to average four values, you can do so by grouping the addition of the 
values in parentheses:

avg = (i + j + k + l) / 4;  /* Computes average */

TIP Use lots of parentheses. They clarify your expressions. 
Even if the regular operator order will suffice for your expression, 
parentheses make the expression easier for you to decipher if you 
need to change the program later.

10_9780789751980_ch09.indd   79 7/17/13   12:28 PM



80 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Assignments Everywhere
As you can see from the order of operators table, the assignment operator has 
precedence and associativity, as do the rest of the operators. Assignment has very 
low priority in the table, and it associates from right to left.

The right-to-left associativity lets you perform an interesting operation: You can 
assign a value to more than one variable in the same expression. To assign the 
value of 9 to 10 different variables, you could do this:

a = 9; b = 9; c = 9; d = 9; e = 9;�f = 9; g = 9; h = 9; i = 9; j = 9;

but this is easier:

a = b = c = d = e = f = g = h = i = j = 9;

Because of the right-to-left associativity, C first assigns the 9 to j, then puts the 9 
in i, and so on.

NOTE C doesn’t initialize variables for you. If you wanted to 
put 0 in a bunch of variables, a multiple assignment would do it 
for you.

Every C expression produces a value. The expression j = 9; does put a 9 in j, 
but it also results in a completed value of 9, which is available to store somewhere 
else, if needed. The fact that every assignment results in an expression lets you do 
things like this that you can’t always do in other programming languages:

a = 5 * (b = 2);  /* Puts a 2 in b and a 10 in a */

Here’s one last program example that uses assignments, operators, and parenthe-
ses to change the order of operators:
// Example program #3 from Chapter 9 of Absolute Beginner's Guide to 

// C, 3rd Edition

// File Chapter9ex3.c

/* This program calculates the average of four grades and also does 

some other basic math. */

#include <stdio.h>

main()

10_9780789751980_ch09.indd   80 7/17/13   12:28 PM



CHAPTER 9  CRUNCHING THE NUMBERS—LETTING C HANDLE MATH FOR YOU 81

{

    int grade1, grade2, grade3, grade4;

    float averageGrade, gradeDelta, percentDiff;

    /* The student got 88s on the first and third test,

        so a multiple assignment statement works. */

    grade1 = grade3 = 88;

    grade2 = 79;

    // The user needs to enter the fourth grade

    printf("What did you get on the fourth test"); 

    printf(" (An integer between 0 and 100)?");

    scanf(" %d", &grade4);

    averageGrade = (grade1+grade2+grade3+grade4)/4;

    printf("Your average is %.1f.\n", averageGrade);

    gradeDelta = 95 - averageGrade;

    percentDiff = 100 * ((95-averageGrade) / 95);

    printf("Your grade is %.1f points lower than the ", gradeDelta);

    printf("top grade in the class (95)\n");

    printf("You are %.1f percent behind ", percentDiff);

    printf("that grade!\n\n\n");

    return 0;

    }

This program helps reinforce the use of the assignment operators, as well as 
the operators for addition, subtraction, multiplication, and division. You also use 
parentheses to set your own order of operations, including a double parentheses 
when calculating the percent difference between the user’s grade and the top 
grade in the class. Keep practicing these C programs, and you will have the top 
grade in your programming class!

10_9780789751980_ch09.indd   81 7/17/13   12:28 PM



82 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
C provides several math operators that do calculations for you. You just need to 
understand the order of operators to ensure that you input your numbers correctly 
for your desired calculations. Key concepts from this chapter include:

 • Use +, -, *, and / for addition, subtraction, multiplication, and division, 
respectively.

 • Use the modulus operator (%) if you want the remainder of an integer division.

 • Remember the order of operators, and use parentheses if you need to change 
the order.

 • Don’t put two minus signs together if you are subtracting a negative number, 
or C will think you are using a different operator. Place a space between the 
two minus signs.

 • Use multiple assignment operators if you have several variables to initialize.

10_9780789751980_ch09.indd   82 7/17/13   12:28 PM



POWERING UP YOUR 
VARIABLES WITH 
ASSIGNMENTS AND 
EXPRESSIONS
As you can see from Table 9.1 in the last chapter, C has a rich assortment 

of operators. Many operators help C keep its command vocabulary small. 

C doesn’t have many commands, but it has a lot more operators than in 

most other programming languages; whereas most computer program-

ming languages have relatively few operators and lots of commands, C 

retains its succinct nature by providing many powerful operators.

This chapter explores a few more operators that you need as you write 

programs. The compound assignment operators and the typecast opera-

tor provide the vehicles for several advanced operations.

I N  T H I S  C H A P T E R

10
• Saving time with compound operators

• Fitting compound operators into the order of 
operators

• Typecasting your variables

11_9780789751980_ch10.indd   83 7/17/13   12:28 PM



84 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Compound Assignment
Many times in your programs, you will have to change the value of a variable. Until 
now, all variables have been assigned values based on constant literal values or 
expressions. However, often you will need to update a variable.

Suppose your program had to count the number of times a profit value went 
below zero. You would need to set up a counter variable. A counter variable is a 
variable that you add 1 to when a certain event takes place. Every time a profit 
value goes negative, you might do this:

lossCount = lossCount + 1;  /* Adds 1 to lossCount variable */

WARNING In math, nothing can be equal to itself plus 1. 
With computers, though, the previous assignment statement adds 
1 to lossCount and then assigns that new value to lossCount, 
essentially adding 1 to the value of lossCount. Remember that 
an equals sign means to take whatever is on the right of the equals 
sign and store that computed value in the variable on the left.

The following simple program prints the numbers from 1 to 5 using a counter 
assignment statement before each printf() and then counts back down to 1:
// Example program #1 from Chapter 10 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter10ex1.c

/* This program increases a counter from 1 to 5, printing updates 

and then counts it back down to 1. */

#include <stdio.h>

main()

{

    int ctr = 0;

    ctr = ctr + 1; // increases counter to 1

    printf("Counter is at %d.\n", ctr);

    ctr = ctr + 1; // increases counter to 2

    printf("Counter is at %d.\n", ctr);

    ctr = ctr + 1; // increases counter to 3

11_9780789751980_ch10.indd   84 7/17/13   12:28 PM



CHAPTER 10  POWERING UP YOUR VARIABLES WITH ASSIGNMENTS AND EXPRESSIONS 85

    printf("Counter is at %d.\n", ctr);

    ctr = ctr + 1; // increases counter to 4

    printf("Counter is at %d.\n", ctr);

    ctr = ctr + 1; // increases counter to 5

    printf("Counter is at %d.\n", ctr);

    ctr = ctr - 1; // decreases counter to 4

    printf("Counter is at %d.\n", ctr);

    ctr = ctr - 1; // decreases counter to 3

    printf("Counter is at %d.\n", ctr);

    ctr = ctr - 1; // decreases counter to 2

    printf("Counter is at %d.\n", ctr);

    ctr = ctr - 1; // decreases counter to 1

    printf("Counter is at %d.\n", ctr);

    return 0;

    }

The following lines show the program’s output. Notice that ctr keeps increasing 
(in computer lingo, it’s called incrementing) by 1 with each assignment statement 
until it reaches 5, and then decreases (called decrementing) by 1 with each assign-
ment statement until it reaches 1. (Subtracting from a counter would come in 
handy if you needed to decrease totals from inventories as products are sold.)
Counter is at 1.

Counter is at 2.

Counter is at 3.

Counter is at 4.

Counter is at 5.

Counter is at 4.

Counter is at 3.

Counter is at 2.

Counter is at 1.

Other times, you’ll need to update a variable by adding to a total or by adjusting 
it in some way. The following assignment statement increases the variable sales by 
25 percent:

sales = sales * 1.25;  /* Increases sales by 25 percent */

11_9780789751980_ch10.indd   85 7/17/13   12:28 PM



86 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

C provides several compound operators that let you update a variable in a manner 
similar to the methods just described (incrementing, decrementing, and updat-
ing by more than 1). However, instead of repeating the variable on both sides of 
the equals sign, you have to list the variable only once. As with much of C, some 
examples will help clarify what is done with the compound operators.

NOTE Chapter 15, “Looking for Another Way to Create 
Loops,” shows you how the for statement makes updating vari-
ables easier.

If you want to add 1 to a variable, you can use the compound addition operator, 
+=. These two statements produce the same result:

lossCount = lossCount + 1;  /* Adds 1 to lossCount variable */

and

lossCount += 1;  /* Adds 1 to lossCount variable */

Instead of multiplying sales by 1.25 and then assigning it to itself like this:

sales = sales * 1.25;  /* Increases sales by 25 percent */

you can use the compound multiplication operator, *=, to do this:

sales *= 1.25;  /* Increases sales by 25 percent */

TIP The compound operators are quicker to use than writing 
out the entire assignment because you don’t have to list the same 
variable name on both sides of the equals sign. Also, the com-
pound operators reduce typing errors because you don’t have to 
type the same variable name twice in the same statement.

Table 10.1 lists all the compound assignment operators and gives examples of 
each. All the operators you’ve seen so far in this book, from addition through 
modulus, have corresponding compound operators.

TABLE 10.1 Compound Assignment Operators

Compound Operator Example Equivalent Statement

*= total *= 1.25; total = total * 1.25;

/= amt /= factor; amt = amt / factor;

%= days %= 3; days = days % 3;

+= count += 1; count = count + 1;

-= quantity -= 5; quantity = quantity – 5;

11_9780789751980_ch10.indd   86 7/17/13   12:28 PM



CHAPTER 10  POWERING UP YOUR VARIABLES WITH ASSIGNMENTS AND EXPRESSIONS 87

This second sample program produces the exact same result as the first program 
in the chapter; it just uses compound operators to increase and decrease the 
counter. In addition, some of the compound operator statements are located right 
in the printf() statements to show you that you can combine the two lines of 
code into one.
// Example program #2 from Chapter 10 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter10ex2.c

/* This program also increases a counter from 1 to 5, printing up-

dates and then counts it back down to 1. However, it uses compound 

operators*/

#include <stdio.h>

main()

{

    int ctr = 0;

    ctr += 1; // increases counter to 1

    printf("Counter is at %d.\n", ctr);

    ctr += 1; // increases counter to 2

    printf("Counter is at %d.\n", ctr);

    printf("Counter is at %d.\n", ctr += 1);

    ctr += 1; // increases counter to 4

    printf("Counter is at %d.\n", ctr);

    printf("Counter is at %d.\n", ctr += 1);

    ctr -= 1; // decreases counter to 4

    printf("Counter is at %d.\n", ctr);

    printf("Counter is at %d.\n", ctr -= 1);

    printf("Counter is at %d.\n", ctr -= 1);

    printf("Counter is at %d.\n", ctr -= 1);

    return 0;

    }

11_9780789751980_ch10.indd   87 7/17/13   12:28 PM



88 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Watch That Order!
Look at the order of operators table in the previous chapter (Table 9.1) and locate 
the compound assignment operators. You’ll see that they have very low prece-
dence. The +=, for instance, is several levels lower than the +.

Initially, this might not sound like a big deal. (Actually, maybe none of this sounds 
like a big deal. If so, great! C should be easier than a lot of people would have 
you think.) The order of operators table can haunt the unwary C programmer. 
Think about how you would evaluate the second of these expressions:
total = 5;

total *= 2 + 3;  /* Updates the total variable */

At first glance, you might think that the value of total is 13 because you learned 
earlier that multiplication is done before addition. You’re right that multiplication is 
done before addition, but compound multiplication is done after addition, accord-
ing to the order of operators. Therefore, the 2 + 3 is evaluated to get 5, and 
then that 5 is multiplied by the old value of total (which also happens to be 5) to 
get a total of 25, as Figure 10.1 points out.

total * = 2+3;

total = total *(2 + 3);

is the same thing as this:

*= +because           is lower than    in the table.

FIGURE 10.1

The compound operators reside on a low level.

Typecasting: Hollywood Could Take Lessons 
from C

Two kinds of typecasting exist: the kind that directors of movies often do (but we 
don’t cover that here) and also C’s typecasting. A C typecast temporarily changes 
the data type of one variable to another. Here is the format of a typecast:

(dataType)value

11_9780789751980_ch10.indd   88 7/17/13   12:28 PM



CHAPTER 10  POWERING UP YOUR VARIABLES WITH ASSIGNMENTS AND EXPRESSIONS 89

The dataType can be any C data type, such as int or float. The value is any 
variable, literal, or expression. Suppose that age is an integer variable that holds 
6. The following converts age to a float value of 6.0:

(float)age;

If you were using age in an expression with other floats, you should typecast age 
to float to maintain consistency in the expression.

TIP Because of some rounding problems that can automati-
cally occur if you mix data types, you’ll have fewer problems if 
you explicitly typecast all variables and literals in an expression to 
the same data type.

Never use a typecast with a variable on a line by itself. Typecast where a variable 
or an expression has to be converted to another value to properly compute a 
result. The preceding typecast of age might be represented like this:

salaryBonus = salary * (float)age / 150.0;

age does not change to a floating-point variable—age is changed only temporar-
ily for this one calculation. Everywhere in the program that age is not explicitly 
typecast, it is still an int variable.

WARNING If you find yourself typecasting the same vari-
able to a different data type throughout a program, you might 
have made the variable the wrong type to begin with.

You can typecast an entire expression. The following statement typecasts the 
result of an expression before assigning it to a variable:

value = (float)(number - 10 * yrsService);

The parentheses around the expression keep the typecast from casting only the 
variable number. C does perform some automatic typecasting. If value is defined 
as a float, C typecasts the prec eding expression for you before storing the result 
in value. Nevertheless, if you want to clarify all expressions and not depend on 
automatic typecasting, go ahead and typecast your expressions.

11_9780789751980_ch10.indd   89 7/17/13   12:28 PM



90 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The goal of this chapter was to teach you additional operators that help you write 
C programs. You also learned to use typecasting if you want to mix variables and 
constants of different data types. Key concepts from this chapter include:

 • Use compound assignment operators when updating variable values.

 • Use compound assignment operators to eliminate a few typing errors and to 
decrease your program-writing time.

 • Put a data type in parentheses before a variable, expression, or data value you 
want to typecast.

 • Don’t mix data types. Instead, typecast data so that it is all the same type 
before evaluating it.

 • Don’t ignore the order of operators! The compound operators have low 
priority in the table and are done after almost every other operator finishes.

11_9780789751980_ch10.indd   90 7/17/13   12:28 PM



THE FORK IN THE ROAD—
TESTING DATA TO PICK A 
PATH
C provides an extremely useful statement called if. if lets your pro-

grams make decisions and execute certain statements based on the 

results of those decisions. By testing contents of variables, your programs 

can produce different output, given different input.

This chapter also describes relational operators. Combined with if, 

relational operators make C a powerful data-processing language. 

Computers would really be boring if they couldn’t test data; they would 

be little more than calculators if they had no capability to decide courses 

of action based on data.

I N  T H I S  C H A P T E R

11
• Testing data

• Using if

• Using else

12_9780789751980_ch11.indd   91 7/17/13   12:28 PM



92 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Testing Data
The C if statement works just like it does in spoken language: If something is 
true, do one thing; otherwise, do something else. Consider these statements:

If I make enough money, we’ll go to Italy.

If the shoes don’t fit, take them back.

If it’s hot outside, water the lawn.

Table 11.1 lists the C relational operators, which permit testing of data. Notice 
that some of the relational operators consist of two symbols.

TABLE 11.1 C Relational Operators

Relational Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

NOTE Relational operators compare two values. You always 
put a variable, literal, or expression—or a combination of any two 
of them—on either side of a relational operator.

Before delving into if, let’s look at a few relational operators and see what they 
really mean. A regular operator produces a mathematical result. A relational oper-
ator produces a true or false result. When you compare two data values, the data 
values either produce a true comparison or they don’t. For example, given the fol-
lowing values:
int i = 5;

int j = 10;

int k = 15;

int l = 5;

12_9780789751980_ch11.indd   92 7/17/13   12:28 PM



CHAPTER 11  THE FORK IN THE ROAD—TESTING DATA TO PICK A PATH 93

the following statements are true:
i == l;

j < k;

k > i;

j != l;

The following statements are not true, so they are false:
i > j;

k < j;

k == l

TIP To tell the difference between = and ==, remember that 
you need two equals signs to double-check whether something is 
equal.

WARNING Only like values should go on either side of the 
relational operator. In other words, don’t compare a character to 
a float. If you have to compare two unlike data values, use a type-
cast to keep the values the same data type.

Every time C evaluates a relational operator, a value of 1 or 0 is produced. True 
always results in 1, and false always results in 0. The following statements assign a 
1 to the variable a and a 0 to the variable b:
a = (4 < 10);  // (4 < 10) is true, so a 1 is put in a

b = (8 == 9);  // (8 == 9) is false, so a 0 is put in b

You will often use relational operators in your programs because you’ll often want 
to know whether sales (stored in a variable) is more than a set goal, whether pay-
roll calculations are in line, and whether a product is in inventory or needs to be 
ordered, for example. You have seen only the beginning of relational operators. 
The next section explains how to use them.

Using if
The if statement uses relational operators to perform data testing. Here’s the for-
mat of the if statement:
if (condition)

{ block of one or more C statements; }

12_9780789751980_ch11.indd   93 7/17/13   12:28 PM



94 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The parentheses around the condition are required. The condition is a rela-
tional test like those described in the preceding section. The block of one or more 
C statements is called the body of the if statement. The braces around the block 
of one or more C statements are required if the body of the if contains more 
than a single statement.

TIP Even though braces aren’t required, if an if contains just 
one statement, always use the braces. If you later add statements 
to the body of the if, the braces will be there. If the braces 
enclose more than one statement, the braces enclose what is 
known as a compound statement.

Here is a program with two if statements:
// Example program #1 from Chapter 11 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter11ex1.c

/* This program asks the user for their birth year and calculates 

how old they will be in the current year. (it also checks to make 

sure a future year has not been entered.) It then tells the user if 

they were born in a leap year. */

#include <stdio.h>

#define CURRENTYEAR 2013

main()

{

    int yearBorn, age;

    printf("What year were you born?\n");

    scanf(" %d", &yearBorn);

    // This if statement can do some data validation, making sure 

    // the year makes sense

    // The statements will only execute if the year is after the 

    // current year

12_9780789751980_ch11.indd   94 7/17/13   12:28 PM



CHAPTER 11  THE FORK IN THE ROAD—TESTING DATA TO PICK A PATH 95

    if (yearBorn > CURRENTYEAR)

    {

        printf("Really? You haven't been born yet?\n");

        printf("Want to try again with a different year?\n");

        printf("What year were you born?\n");

        scanf(" %d", &yearBorn);

    }

    age = CURRENTYEAR - yearBorn;

    printf("\nSo this year you will turn %d on your birthday!\n", 

    age);

    // The second if statment uses the modulus operator to test if 

    // the year of birth was a Leap Year. Again, only if it is will 

    // the code execute

    if ((yearBorn % 4) == 0)

    {

        printf("\nYou were born in a Leap Year--cool!\n");

    }

    return 0;

}

Consider a few notes about this program. If you use the current year in your pro-
gram, that’s a good variable to set with a #define statement before main(). 
That way, you can simply change that one line later if you run this program any 
year in the future.

The first if statement is an example of how to potentially use if as a form of 
data validation. The statement tests whether the user has entered a year later than 
the current year and, if so, executes the section of code that follows in the braces. 
If the user has entered a proper year, the program skips down to the line that cal-
culates the user’s age. The section in the braces reminds the reader that he or she 
couldn’t possibly be born in the year entered and gives the user a chance to enter 
a new year. The program then proceeds as normal.

12_9780789751980_ch11.indd   95 7/17/13   12:28 PM



96 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Here you might have noticed a limitation to this plan. If the user enters an incor-
rect year a second time, the program proceeds and even tells the age in nega-
tive years! A second style of conditional statements, a do...while loop, keeps 
hounding the user until he or she enters correct data. This is covered in Chapter 
14, “Code Repeat—Using Loops to Save Time and Effort.”

TIP You can change the relational operator to not accept the 
data entry if the user types in a year greater than or equal to the 
current year, but maybe the user is helping a recent newborn!

After calculating what the user’s age will be on his or her birthday this year, a sec-
ond if statement tests the year of the user’s birth to see whether he or she was 
born in a leap year by using the modulus operator. Only leap years are divisible 
by 4 without a remainder, so only people who were born in one of those years will 
see the message noting the one-in-four odds of their birth year. For the rest, that 
section of code is skipped and the program reaches its termination point.

NOTE The main() function in the Draw Poker program in 
Appendix B, “The Draw Poker Program,” asks the player which 
cards to keep and which cards to replace. An if is used to deter-
mine exactly what the user wants to do.

Otherwise…: Using else
In the preceding section, you saw how to write a course of action that executes if 
the relational test is true. If the relational test is false, nothing happens. This sec-
tion explains the else statement that you can add to if. Using else, you can 
specify exactly what happens when the relational test is false. Here is the format of 
the combined if…else:
if (condition)

{ block of one or more C statements; }

else

{ block of one or more C statements; }

So in the case of if…else, one of the two segments of code will run, depend-
ing on whether the condition tested is true (in which case, the if code will run) or 
false (in which case, the else code will run). This is perfect if you have two pos-
sible outcomes and need to run different code for each.

Here is an example of if…else that moves the previous program to an if…else 
construction. In this version, the user does not have the opportunity to re-enter a 
year, but it does congratulate the user on coming back from the future.

12_9780789751980_ch11.indd   96 7/17/13   12:28 PM



CHAPTER 11  THE FORK IN THE ROAD—TESTING DATA TO PICK A PATH 97

// Example program #2 from Chapter 11 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter11ex2.c

/* This program asks the user for their birth year and calculates 

how old they will be in the current year. (it also checks to make 

sure a future year has not been entered.) It then tells the user if 

they were born in a leap year. */

#include <stdio.h>

#define CURRENTYEAR 2013

main()

{

    int yearBorn, age;

    printf("What year were you born?\n");

    scanf(" %d", &yearBorn);

    // This if statement can do some data validation, making sure 

    // the year makes sense

    // The statements will only execute if the year is after the 

    // current year

    if (yearBorn > CURRENTYEAR)

    {

        printf("Really? You haven't been born yet?\n");

        printf("Congratulations on time travel!\n");

    }

    else

    {

        age = CURRENTYEAR - yearBorn;

12_9780789751980_ch11.indd   97 7/17/13   12:28 PM



98 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

        printf("\nSo this year you will turn %d on your birthday!\n", 

               age);

        // The second if statment uses the modulus operator to test 

        // if the year of

        // birth was a Leap Year. Again, only if it is will the code 

        // execute

        if ((yearBorn % 4) == 0)

        {

            printf("\nYou were born in a Leap Year--cool!\n");

        }

    }

    return 0;

}

This is largely the same program as before (with the exception that the user does 
not have the option of entering a second date if the first one is deemed incorrect), 
but something else is worth noting. The second if statement is embedded inside 
the code that executes during the else portion of the first if statement. This is 
known as a nested statement, and it is something you will probably be doing as 
your programs get more complicated. You can also test multiple conditions, but 
the switch statement, covered in Chapter 17, “Making the case for the switch 
Statement,” helps you master that statement.

TIP Put semicolons only at the end of executable statements 
in the body of the if or the else. Never put a semicolon after 
the if or the else; semicolons go only at the end of complete 
statements.

NOTE As with the body of the if, the body of the else 
doesn’t require braces if it consists of a single statement—but it’s 
a good idea to use braces anyway.

This last program demonstrates another way to use if and else, but this time 
you can test for four different conditions:
// Example program #3 from Chapter 11 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter11ex3.c

12_9780789751980_ch11.indd   98 7/17/13   12:28 PM



CHAPTER 11  THE FORK IN THE ROAD—TESTING DATA TO PICK A PATH 99

/* This program asks the user their state of happiness on a scale of 

1 to 10 and then gives a custom 2-line message based on their range, 

either 1-2, 3-4, 5-7, or 8-10. */

#include <stdio.h>

main()

{

    int prefer;

    printf("On a scale of 1 to 10, how happy are you?\n");

    scanf(" %d", &prefer);

    // Once the user's level of happiness is entered, a series of if 

    // statements

    // test the number against decreasing numbers. Only one of the 

    // four will be

    // executed.

    if (prefer >= 8)

    {

        printf("Great for you!\n");

        printf("Things are going well for you!\n");

    }

    else if (prefer >= 5)

    {

        printf("Better than average, right?\n");

        printf("Maybe things will get even better soon!\n");

    }

    else if (prefer >= 3)

    {

        printf("Sorry you're feeling not so great.\n");

        printf("Hope things turn around soon...\n");

    }

12_9780789751980_ch11.indd   99 7/17/13   12:28 PM



100 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    else

    {

        printf("Hang in there--things have to improve, right?\n");

        printf("Always darkest before the dawn.\n");

    }

    return 0;

}

Here are two different runs of this program:
On a scale of 1 to 10, how happy are you?

5

Better than average, right?

Maybe things will get better soon!

On a scale of 1 to 10, how happy are you?

9

Great for you!

Things are going well for you!

The goal of this program is to demonstrate that if…else statements do not have 
to be limited to two choices. Frankly, you can set as many if…else if…else 
if…else conditions as you’d like. For example, you could have a custom mes-
sage for every number between 1 and 10 in this program. Each test eliminates 
some of the possibilities. This is why the second test works only for numbers 5 
through 7, even though the test is for whether the number is greater or equal to 
5; numbers 8 and higher were already eliminated with the first if test.

12_9780789751980_ch11.indd   100 7/17/13   12:28 PM



CHAPTER 11  THE FORK IN THE ROAD—TESTING DATA TO PICK A PATH 101

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you ways to test data and execute one set of 
code or another, depending on the result of that test. You don’t always want the 
same code to execute every time someone runs your program because the data is 
not always the same. Key concepts from this chapter include:

 • Use relational operators to compare data.

 • Remember that a true relational result produces a 1, and a false relational 
result produces a 0.

 • Use if to compare data and else to specify what to do if the if test fails.

 • Put braces around the if body of code and around the else body of code. 
All the code in the braces either executes or does not execute, depending on 
the relational comparison.

 • Don’t put a semicolon after if or else. Semicolons go only at the end of 
each statement, inside the body of the if or the else.

12_9780789751980_ch11.indd   101 7/17/13   12:28 PM



This page intentionally left blank 



JUGGLING SEVERAL 
CHOICES WITH LOGICAL 
OPERATORS
Sometimes the relational operators described in Chapter 11, “The Fork in 

the Road—Testing Data to Pick a Path,” simply can’t express all the test-

ing conditions. For example, if you wanted to test whether a numeric or 

character variable is within a certain range, you would have to use two if 

statements, like this:

if (age >= 21) /* See if 21 <= age <= 65 */

{ if (age <= 65)

    {

    printf("The age falls between 21 and 65.\n");

    }

}

I N  T H I S  C H A P T E R

12
• Getting logical

• Avoiding the negative

• The order of logical operators

13_9780789751980_ch12.indd   103 7/17/13   12:28 PM



104 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Although there’s nothing wrong with using nested if statements, they’re not 
extremely straightforward, and their logic is slightly more complex than you really 
need. By using the logical operators you’ll read about in this chapter, you can 
combine more than one relational test in a single if statement to clarify your 
code.

NOTE Don’t let the terms logical and relational make you 
think these two groups of operators are difficult. As long as you 
understand how the individual operators work, you don’t have to 
keep track of what they’re called as a group.

NOTE A relational operator simply tests how two values 
relate (how they compare to each other). The logical operators 
combine relational operators.

Getting Logical
Three logical operators exist (see Table 12.1). Sometimes logical operators are 
known as compound relational operators because they let you combine more than 
one relational operator. (See the previous Note.)

TABLE 12.1 The Logical Operators

Logical Operator Meaning

&& And

|| Or

! Not

Logical operators appear between two or more relational tests. For example, here 
are the first parts of three if statements that use logical operators:

if ((age >= 21) && (age <= 65)) {

and

if ((hrsWorked > 40) || (sales > 25000.00)) {

and

if (!(isCharterMember)) {

13_9780789751980_ch12.indd   104 7/17/13   12:28 PM



CHAPTER 12  JUGGLING SEVERAL CHOICES WITH LOGICAL OPERATORS 105

If you combine two relational operators with a logical operator or you use the ! 
(not) operator to negate a relation, the entire expression following the if state-
ment requires parentheses. This is not allowed:

if !isCharterMember {  /* Not allowed */

Of course, there is more to the preceding if statements than what is shown, but 
to keep things simple at this point, the if bodies aren’t shown.

Logical operators work just as they do in spoken language. For example, consider 
the spoken statements that correspond to the code lines just seen:

if ((age >= 21) && (age <= 65)) {

This could be worded in spoken language like this:

“If the age is at least 21 and no more than 65,...”

And the code

if ((hrsWorked > 40) || (sales > 25000.00)) {

could be worded in spoken language like this:

“If the hours worked are more than 40 or the sales are more than $25000,... “

Similarly,

if (!(isCharterMember)) {

could be worded in spoken language like this:

“If you aren’t a charter member, you must...”

As you have no doubt figured out, these three spoken statements describe exactly 
the same tests done by the three if statements. You often place an and between 
two conditions, such as “If you take out the trash and clean your room, you can 
play.”

NOTE Reread that stern statement you might say to a child. 
The and condition places a strict requirement that both jobs must 
be done before the result can take place. That’s what && does also. 
Both sides of the && must be true for the body of the if to execute.

Let’s continue with this same line of reasoning for the || (or) operator. You might 
be more lenient on the kid by saying this: “If you take out the trash or clean your 
room, you can play.” The or is not as restrictive. One side or the other side of the 
|| must be true (and they both can be true as well). If either side is true, the result 
can occur. The same holds for the || operator. One or the other side of the || 
must be true (or they both can be true) for the body of the if to execute.

13_9780789751980_ch12.indd   105 7/17/13   12:28 PM



106 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The ! (not) operator reverses a true or a false condition. True becomes false, and 
false becomes true. This sounds confusing, and it is! Limit the number of ! opera-
tors you use. You can always rewrite a logical expression to avoid using ! by 
reversing the logic. For example, the following if:
if ( !(sales < 3000)) {

is exactly the same as this if:

if ( sales >= 3000) {

As you can see, you can remove the ! and turn a negative statement into a posi-
tive test by removing the ! and using an opposite relational operator.

The following program uses each of the three logical operators to test data. Two 
of the three conditions will be met, and their if sections of code will print; the 
third is not true, so the else section of code will print.
// Example program #1 from Chapter 12 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter12ex1.c

/* This program defines a series of variables and expressions and 

then uses both relational and logical operators to test them against 

each other. */

#include <stdio.h>

main()

{

  // set up some common integers for the program

  int planets = 8;

  int friends = 6;

  int potterBooks = 7;

  int starWars = 6;

  int months = 12;

  int beatles = 4;

  int avengers = 6;

  int baseball = 9;

  int basketball = 5;

13_9780789751980_ch12.indd   106 7/17/13   12:28 PM



CHAPTER 12  JUGGLING SEVERAL CHOICES WITH LOGICAL OPERATORS 107

  int football = 11;

// This first logical statement uses the AND operator to test 

// whether the cast of Friends and the Beatles would have 

// enough people to make a baseball team AND the cast

// of Friends and the Avengers would have enough people

// to field a football team. If so, the statements will print.

 if ((friends + beatles >= baseball) && 

      (friends + avengers >= football))

      {

            printf("The cast of Friends and the Beatles ");

            printf("could make a baseball team,\n");

            printf("AND the cast of Friends plus the Avengers ");

            printf("could make a football team.\n");

      }

 else

 {

              printf("Either the Friends cannot make a ");

              printf("baseball team with the Fab Four, \n");

              printf("OR they can't make a Gridiron Gang with the ");

              printf("Avengers (or both!)\n");

 }

// This second logical statement uses the OR operator to test 

// whether the number of Star Wars movies is less than months 

// in the year OR the number of Harry Potter books is less than 

// months in the year. If either statement is true, 

// the statements will print.

  if ((starWars <= months) || (potterBooks <= months))

  {

    printf("\nYou could read one Harry Potter book a month,\n");

    printf("and finish them all in less than a year,\n");

    printf("OR you could see one Star Wars movie a month,\n");

    printf("and finish them all in less than a year.\n");

13_9780789751980_ch12.indd   107 7/17/13   12:28 PM



108 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

  }

  else

  {

    printf("Neither can happen--too many books or movies,\n");

    printf("Not enough time!\n\n");

  }

// This final logical statemnt uses the NOT operator to test 

// whether the number of baseball players on a team added 

// to the number of basketball players on a team is NOT 

// greater than the number of football  players on

// a team. If so, the statements will print.

  if (!(baseball + basketball > football))

  {

    printf("\nThere are fewer baseball and basketball players\n");

    printf("combined than football players.");

  }

  else

  {

    printf("\nThere are more baseball and basketball players\n");

    printf("combined than football players.");

  }

  return 0;

}

Experiment with this program—change the conditions, variables, and operators 
to get different printing combinations. As mentioned before, the most confusing 
logical operator is the  last one in the program, the not (!) operator. Most of the 
time, you can write a statement that avoids the use of it.

13_9780789751980_ch12.indd   108 7/17/13   12:28 PM



CHAPTER 12  JUGGLING SEVERAL CHOICES WITH LOGICAL OPERATORS 109

Avoiding the Negative
Suppose you wanted to write an inventory program that tests whether the number 
of a certain item has fallen to zero. The first part of the if might look like this:

if (count == 0) {

Because the if is true only if count has a value of 0, you can rewrite the state-
ment like this:

if (!count) { /* Executes if's body only if count is 0 */

Again, the ! adds a little confusion to code. Even though you might save some 
typing effort with a fancy !, clearer code is better than trickier code, and if 
(count == 0) { is probably better to use, despite the microsecond your pro-
gram might save by using !.

Using the && operator, the following program prints one message if the user’s 
last name begins with the letters P through S, and it prints another message if the 
name begins with something else.
// Example program #2 from Chapter 12 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter12ex2.c

/* This program asks for a last name, and if the user has a last 

name that starts with a letter between P and Q, they will be sent to 

a special room for their tickets. */

#include <stdio.h>

main()

{

  // set up an array for the last name and then get it from the user

  char name[25];

  printf("What is your last name? ");

  printf("(Please capitalize the first letter!)\n");

  scanf(" %s", name); 

  //For a string array, you don't need the &

13_9780789751980_ch12.indd   109 7/17/13   12:28 PM



110 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

  if ((name[0] >= 'P') && (name[0] <= 'S'))

  {

    printf("You must go to room 2432 ");

    printf("for your tickets.\n");

  }

  else

  {

    printf("You can get your tickets here.\n");

  }

  return 0;

}

One point about this program is worth noting. Chapter 8, “Interacting with Users,” 
suggested that you use your printf() statement to clarify what data you need 
from the user and in what format. Reminding users to type their last name using a 
capital letter helps avoid possible problems. If your user’s last name is Peyton, but 
she types it as peyton with a lowercase p, the program would not send the user 
to Room 2432 because the logical operator checks only for capitals. Now, if you 
wanted to check for either, you could use the following, more complicated, logical 
statement:

if (((name[0] >= 'P') && (name[0] <= 'S')) || (name[0] >= 'p') && 

It’s a little harder to read and follow, but such is the price of data vigilance!

NOTE How would the program be different if the && were 
changed to a ||? Would the first or the second message appear? 
The answer is the first one. Everybody would be sent to Room 2432. 
Any letter from A to Z is either more than P or less than S. The test in 
the preceding program has to be && because Room 2432 is available 
only to people whose names are between P and S.

As mentioned in the last chapter, if statements can be helpful when ensuring that 
the user has entered the proper information your program is looking for. The fol-
lowing section of code asks the user for a Y or N answer. The code includes an || 
to ensure that the user enters a correct value.
printf("Is your printer on (Y/N) ?\n");

scanf(" %c", &ans); //need an & before the name of your char variable

if ((ans == 'Y') || (ans == 'N'))

(name[0] >= 's'))



CHAPTER 12  JUGGLING SEVERAL CHOICES WITH LOGICAL OPERATORS 111

{

    // Gets here if user typed a correct answer.

    if (ans == 'N')

    {

      printf("*** Turn the printer on now. ***\n");

}

}

else

{

      printf("You did not enter a Y or N.\n");

}

TIP You can combine more than two relational operators with 
logical operators, but doing too much in a single statement can 
cause confusion. This is a little too much:

if ((a < 6) || (c >= 3) && (r != 9) || (p <= 1)) {

Try to keep your combined relational tests simple so that your 
programs remain easy to read and maintain.

The Order of Logical Operators
Because logical operators appear in the order of operators table, they have prior-
ity at times, just as the other operators do. Studying the order of operators shows 
you that the && operator has precedence over the ||. Therefore, C interprets the 
following logic:

if (age < 20 || sales < 1200 && hrsWorked > 15) {

like this:

if ((age < 20) || ((sales < 1200) && (hrsWorked > 15))) {

Use ample parentheses. Parentheses help clarify the order of operators. C won’t 
get confused if you don’t use parentheses because it knows the order of opera-
tors table very well. However, a person looking at your program has to figure out 
which is done first, and parentheses help group operations together.

Suppose that a teacher wants to reward her students who perform well and have 
missed very few classes. Also, the reward requires that the students either joined 
three school organizations or were in two sports activities. Whew! You must admit, 
not only will that reward be deserved, but sorting out the possibilities will be difficult.

13_9780789751980_ch12.indd   111 7/17/13   12:28 PM



112 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

In C code, the following if statement would test true if a student met the teach-
er’s preset reward criteria:

if (grade > 93 && classMissed <= 3 && numActs >= 3 || sports >=�2) {

That’s a lot to decipher. Not only is the statement hard to read, but there is a 
subtle error. The || is compared last (because || has lower precedence than &&), 
but that || should take place before the second &&. (If this is getting confusing, 
you’re right! Long-combined relational tests often are.) Here, in spoken language, 
is how the previous if operates without separating its pieces with proper paren-
theses:

If the student’s grade is more than 93 and the student missed three or fewer 
classes and the school activities total three or more, OR if the student participated 
in two or more sports…

Well, the problem is that the student only has to be in sports activities to get the 
reward. The last two relations (separated with the ||) must be compared before 
the third &&. The spoken description should read like this:

If the student’s grade is more than 93 and the student missed three or fewer 
classes and EITHER the school activities total three or more OR the student 
participated in two or more sports…

The following if, with correct parentheses, not only makes the if accurate, but 
also makes it a little more clear:

if ((grade > 93) && (classMissed <= 3) && ((numActs >= 3) ||�(sports 

>= 2)) {

If you like, you can break such long if statements into two or more lines, like this:
if ((grade > 93) && (classMissed <= 3) &&�

((numActs >= 3) || (sports >= 2)) {

Some C programmers even find that two if statements are clearer than four rela-
tional tests, such as these statements:
if ((grade > 93) && (classMissed <= 3)

    { if ((numActs >= 3) || (sports >= 2))�

       { /* Reward the student */ }

The style you end up with depends mostly on what you like best, what you are the 
most comfortable with, and what appears to be the most maintainable.

13_9780789751980_ch12.indd   112 7/17/13   12:28 PM



CHAPTER 12  JUGGLING SEVERAL CHOICES WITH LOGICAL OPERATORS 113

THE ABSOLUTE MINIMUM
This chapter’s goal was to teach you the logical operators. Although relational 
operators test data, the logical operators, && and ||, let you combine more than 
one relational test into a single statement and execute code accordingly. Key con-
cepts from this chapter include:

 • Use logical operators to connect relational operators.

 • Use && when both sides of the operator have to be true for the entire 
condition to be true.

 • Use || when either one side or the other side (or both) have to be true for the 
entire condition to be true.

 • Don’t overdo the use of !. Most negative logic can be reversed (so < becomes 
>= and > becomes <=) to get rid of the not operator.

 • Don’t combine too many relational operators in a single expression.

13_9780789751980_ch12.indd   113 7/17/13   12:28 PM



This page intentionally left blank 



A BIGGER BAG OF 
TRICKS—SOME MORE 
OPERATORS FOR YOUR 
PROGRAMS
Have patience! You’ve learned about almost all the C operators. With 

the exception of a few more advanced operators that you’ll read about 

in Chapter 24, “Solving the Mystery of Pointers,” this chapter rounds out 

the order of operators table and explains conditional operators, incre-

ment operators, and decrement operators.

C operators sometimes substitute for more wordy commands that you 

would use in other programming languages. Not only can an assortment 

of operators speed your program development time, but they also com-

pile more efficiently and run faster than commands. The C operators do a 

lot to make C the efficient language that it is.

I N  T H I S  C H A P T E R

13
• Saying goodbye to if…else and hello to 

conditional

• Using the small-change operators: ++ and --

• Sizing up the situation

14_9780789751980_ch13.indd   115 7/17/13   12:28 PM



116 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Goodbye if…else; Hello, Conditional
The conditional operator is the only C operator that requires three arguments. 
Whereas division, multiplication, and most of the others require two values to work, 
the conditional operator requires three. Although the format of the conditional 
operator looks complex, you will see that it streamlines some logic and is actually 
straightforward to use.

The conditional operator looks like this: ?:. Here is its format:

relation ? trueStatement : falseStatement;

The relation is any relational test, such as age >= 21 or sales <= 25000.0. 
You also can combine the relational operators with the logical operators you 
learned about in Chapter 12, “Juggling Several Choices with Logical Operators.” 
The trueStatement is any valid C statement, and the falseStatement is also 
any valid C statement. Here is an example of a conditional operator:

(total <= 3850.0) ? (total *= 1.10): (total *= 1.05);

TIP The parentheses are not required, but they do help group 
the three parts of the conditional operator so that you can see 
them easier.

If the test in the first set of parentheses is true, the trueStatement executes. If the 
test in the first set of parentheses is false, the falseStatement executes. The condi-
tional operator you just saw does exactly the same thing as this if...else statement:
if (total <= 3850.0

       { total *= 1.10; }

else

       { total *= 1.05; )

This statement tells C to multiply total by 1.10 or by 1.05, depending on the 
result of the relational test.

Just about any if...else statement can be rewritten as a conditional statement. 
The conditional requires less typing, you won’t accidentally leave off a brace some-
where, and the conditional runs more efficiently than an if...else because it 
compiles into more compact code.

TIP The format of the conditional operator is obvious when you 
think of it like this: The question mark asks a question. Keeping this in 
mind, you could state the earlier example as follows: Is the total <= 
3850.0? If so, do the first thing; otherwise, do the second.

14_9780789751980_ch13.indd   116 7/17/13   12:28 PM



CHAPTER 13  A BIGGER BAG OF TRICKS—SOME MORE OPERATORS FOR YOUR PROGRAMS 117

C programmers don’t like the redundancy you saw in the earlier use of the condi-
tional operator. As you can see, the total variable appears twice. Both times, it is 
being assigned a value. When you face such a situation, take the assignment out 
of the conditional operator’s statements:

total *= (total <= 3850.0) ? (1.10): (1.05);

Don’t replace every single if…else with a conditional operator. Many times, if…
else is more readable, and some conditional statements are just too complex to 
squeeze easily into a conditional operator. However, when a simple if…else is all 
that’s needed, the conditional operator provides a nice alternative.

The conditional operator offers one additional advantage over if: The conditional 
often can appear in places where if can’t go. The following print(f) prints a 
trailing s if the number of pears is more than 1:

printf("I ate %d pear%s\n", numPear, (numPear>1) ? ("s.") : ("."));

If the value in numPear is greater than 1, you’ll see something like this printed:

I ate 4 pears.

But if there is only one pear, you’ll see this:

I ate 1 pear.

NOTE Maybe you’re wondering why the conditional operator 
is ?:, but the question mark and colon never appear next to each 
other. Well, that’s just the way it is. It would be too cumbersome 
to go around saying that the conditional operator looks like a 
question mark and a colon with some stuff in between.

Here’s a short program that uses the conditional operator. (Actually, it uses it eight 
times!) The program prompts the user for an integer and then tests whether the 
number is divisible by all single-digit numbers between 2 and 9:
// Example program #1 from Chapter 13 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter13ex1.c

/* This program asks for a number from 1 to 100 and tells then 

whether or not their choice is equally divisible by 2 through 9. */

#include <stdio.h>

14_9780789751980_ch13.indd   117 7/17/13   12:28 PM



118 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

main()

{

    // Define the integer to hold the user's guess and then get it 

    // from the user

int numPick;

printf("Pick an integer between 1 and 100 ");

printf("(The higher the better!)\n");

scanf(" %d", &numPick); //remember for an int, you do need the &

printf("%d %s divisible by 2.", numPick, (numPick % 2 == 0) ? ("is") 

: ("is not"));

printf("\n%d %s divisible by 3.", numPick, (numPick % 3 == 0) ? 

("is") : ("is not"));

printf("\n%d %s divisible by 4.", numPick, (numPick % 4 == 0) ? 

("is") : ("is not"));

printf("\n%d %s divisible by 5.", numPick, (numPick % 5 == 0) ? 

("is") : ("is not"));

printf("\n%d %s divisible by 6.", numPick, (numPick % 6 == 0) ? 

("is") : ("is not"));

printf("\n%d %s divisible by 7.", numPick, (numPick % 7 == 0) ? 

("is") : ("is not"));

printf("\n%d %s divisible by 8.", numPick, (numPick % 8 == 0) ? 

("is") : ("is not"));

printf("\n%d %s divisible by 9.", numPick, (numPick % 9 == 0) ? 

("is") : ("is not"));

return 0;

}

NOTE Although the printf() statement asks for the num-
ber to be between 1 and 100, users actually can enter any inte-
ger. If you use 362880, you’ll find that it is divisible by all eight 
single-digit integers.

14_9780789751980_ch13.indd   118 7/17/13   12:28 PM



CHAPTER 13  A BIGGER BAG OF TRICKS—SOME MORE OPERATORS FOR YOUR PROGRAMS 119

The Small-Change Operators: ++ and --
Although the conditional operator works on three arguments, the increment and 
decrement operators work on only one. The increment operator adds 1 to a vari-
able, and the decrement operator subtracts 1 from a variable. That’s it. ‘Nuff said. 
Almost….

Incrementing and decrementing variables are things you would need to do if you 
were counting items (such as the number of customers who shopped in your store 
yesterday) or counting down (such as removing items from an inventory as people 
buy them). In Chapter 10, “Powering Up Your Variables with Assignments and 
Expressions,” you read how to increment and decrement variables using com-
pound operators. Here, you learn two operators that can more easily do the same. 
The increment operator is ++, and the decrement operator is --. If you want to 
add 1 to the variable count, here’s how you do it:

count++;

You also can do this:

++count;

The decrement operator does the same thing, except that the 1 is subtracted from 
the variable. You can do this:

count--;

You also can do this:

--count;

As you can see, the operators can go on either side of the variable. If the opera-
tor is on the left, it’s called a prefix increment or prefix decrement operator. If the 
operator is on the right, it’s known as a postfix increment or postfix decrement 
operator.

NOTE Never apply an increment or decrement operator to 
a literal constant or an expression. Only variables can be incre-
mented or decremented. You will never see this:

--14;  /* Don't do this! */

Prefix and postfix operators produce identical results when used by themselves. 
Only when you combine them with other expressions does a small “gotcha” 
appears. Consider the following code:
int i = 2, j = 5, n;�

n = ++i * j;

14_9780789751980_ch13.indd   119 7/17/13   12:28 PM



120 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The question is, what is n when the statements finish executing? It’s easy to see 
what’s in j because j doesn’t change and still holds 5. The ++ ensures that i 
is always incremented, so you know that i becomes 3. The trick is determining 
exactly when i increments. If i increments before the multiplication, n becomes 
15, but if i increments after the multiplication, n becomes 10.

The answer lies in the prefix and postfix placements. If the ++ or -- is a prefix, C 
computes it before anything else on the line. If the ++ or -- is a postfix, C com-
putes it after everything else on the line finishes. Because the ++ in the preceding 
code is a prefix, i increments to 3 before being multiplied by j. The following 
statement increments i after multiplying i by j and storing the answer in n:

n = i++ * j;  /* Puts 10 in n and 3 in i */

Being able to increment a variable in the same expression as you use the variable 
means less work on the programmer’s part. The preceding statement replaces the fol-
lowing two statements that you would have to write in other programming languages:
n = i * j;

i = i + 1

NOTE The ++ and -- operators are extremely efficient. If you 
care about such things (most of us don’t), ++ and -- compile into 
only one machine language statement, whereas adding or sub-
tracting 1 using +1 or -1 doesn’t always compile so efficiently.

Let’s revisit the count up and count down program from Chapter 10, this time 
using the prefix increment and decrement operators. This involves even fewer 
lines of code than the last program; we can even cut the code to fewer lines when 
you learn about loops in the next chapter.
// Example program #2 from Chapter 13 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter13ex2.c

/* This program increases a counter from 1 to 5, printing updates 

and then counts it back down to 1. However, it uses the increment 

and decrement operators */

#include <stdio.h>

main()

{

14_9780789751980_ch13.indd   120 7/17/13   12:28 PM



CHAPTER 13  A BIGGER BAG OF TRICKS—SOME MORE OPERATORS FOR YOUR PROGRAMS 121

    int ctr = 0;

    printf("Counter is at %d.\n", ++ctr);

    printf("Counter is at %d.\n", ++ctr);

    printf("Counter is at %d.\n", ++ctr);

    printf("Counter is at %d.\n", ++ctr);

    printf("Counter is at %d.\n", ++ctr);

    printf("Counter is at %d.\n", --ctr);

    printf("Counter is at %d.\n", --ctr);

    printf("Counter is at %d.\n", --ctr);

    printf("Counter is at %d.\n", --ctr);

    return 0;

    }

NOTE To understand the difference between prefix and post-
fix, move all the increment and decrement operators to after the 
ctr variables (ctr++ and ctr--). Can you guess what will hap-
pen? Compile it and see if you are right!

Sizing Up the Situation
You use sizeof() to find the number of memory locations it takes to store values 
of any data type. Although most C compilers now use 4 bytes to store integers, not 
all do. To find out for sure exactly how much memory integers and floating points 
are using, you can use sizeof(). The following statements do just that:
i = sizeof(int); // Puts the size of integers into i.

f = sizeof(float); // Puts the size of floats into f

sizeof() works on variables as well as data types. If you need to know how 
much memory variables and arrays take, you can apply the sizeof() operator to 
them. The following section of code shows you how:
char name[] = "Ruth Claire";

int i = 7;

printf("The size of i is %d.\n", sizeof(i));

printf("The size of name is %d.\n", sizeof(name));

14_9780789751980_ch13.indd   121 7/17/13   12:28 PM



122 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Here is one possible output from this code:
The size of i is 4

The size of name is 12

Depending on your computer and C compiler, your output might differ because 
of the differences in integer sizes. Notice that the character array size is 12, which 
includes the null zero.

TIP The length of a string and the size of a string are two dif-
ferent values. The length is the number of bytes up to but not 
including the null zero, and it is found via strlen(). The size of 
a string is the number of characters it takes to hold the string, 
including the null zero.

NOTE Although sizeof() might seem worthless right now, 
you’ll see how it comes in handy as you progress in C.

THE ABSOLUTE MINIMUM
The goal of this chapter was to round out your knowledge of C operators. 
Understanding these operators doesn’t take a lot of work, yet the operators are 
powerful and substitute for complete statements in other languages. Key concepts 
from this chapter include:

 • Use the conditional operator in place of simple if...else statements to 
improve efficiency. 

 • The conditional operator requires three arguments. Extra parentheses help 
clarify these three arguments by separating them from each other.

 • Use ++ and -- to increment and decrement variables instead of adding and 
subtracting 1 using assignment or the += and -= operators.

 • Don’t think that a prefix and postfix always produce the same values. A 
prefix and postfix are identical only when a single variable is involved. If you 
combine ++ or -- with other variables and expressions, the placement of the 
prefix and postfix is critical to get the result you want.

14_9780789751980_ch13.indd   122 7/17/13   12:28 PM



CODE REPEAT—USING LOOPS 
TO SAVE TIME AND EFFORT
Now that you’ve learned the operators, you’re ready to play “loop the loop” 

with your programs. A loop is simply a section of code that repeats a few times. 

You don’t want a loop to repeat forever—that’s called an infinite loop. The 

loops you write (if you write them properly—and, of course, you will) should 

come to a conclusion when they finish doing the job you set them up to do.

Why would you want a program to loop? The answer becomes clear when you 

think about the advantage of using a computer for tasks that people wouldn’t 

want to do. Computers never get bored, so you should give them mundane 

and repetitive tasks; leave the tasks that require thought to people. You 

wouldn’t want to pay someone to add a list of hundreds of payroll figures, 

and few people would want to do it anyway. Computer programs can do that 

kind of repetitive work. People can then analyze the results when the com-

puter loop finishes calculating all the figures.

I N  T H I S  C H A P T E R

14
• Saving time by looping through code

• Using while

• Using do…while

15_9780789751980_ch14.indd   123 7/17/13   12:27 PM



124 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

If you want to add a list of figures, print company sales totals for the past 12 
months, or add up the number of students who enroll in a computer class, you 
need to use a loop. This chapter explains two common C loops that use the 
while command.

while We Repeat
The while statement always appears at the beginning or end of a loop. The easi-
est type of loop that uses while is called the while loop. (The other is called the 
do…while loop. You’ll see it a little later.) Here is the format of while:
while (condition)

{ block of one or more C statements; }

The condition is a relational test that is exactly like the relational test 
condition you learned for if. The block of one or more C statements 
is called the body of the while.

The body of the while repeats as long as the condition is true. This is the dif-
ference between a while statement and an if statement: The body of the if 
executes if the condition is true. The body of the if executes only once, how-
ever, whereas the body of the while can execute a lot of times.

Figure 14.1 helps explain the similarities and differences between if and while. 
The formats of the two commands are similar, in that braces are required if the 
body of the while has more than one statement. Even if the body of the while 
contains only a single statement, you should enclose the body in braces so that 
the braces will still be there if you later add statements to the while. Never put 
a semicolon after the while’s parenthesis. The semicolon follows only the state-
ments inside the body of the while.

WARNING The two statements in Figure 14.1 are similar, 
but they don’t do the same thing. while and if are two sepa-
rate statements that do two separate things.

You must somehow change a variable inside the while loop’s condition. If you 
don’t, the while will loop forever because it will test the same condition each 
time through the loop. Therefore, you avoid infinite loops by making sure the 
body of the while loop changes something in the condition so that eventually 
the condition becomes false and the program continues with the statements 
that follow the while loop.

15_9780789751980_ch14.indd   124 7/17/13   12:27 PM



CHAPTER 14  CODE REPEAT—USING LOOPS TO SAVE TIME AND EFFORT 125

while (amount < 25)
  {
   printf("Amount is too small.\n");

   wrongVal++;

   printf("Try again...What is new amount?\n");

   scanf("%d",&amount);
  }

Using if:

if(amount < 25)

{

printf("Amount is too small.\n");

wrongVal++;
}

MOVE ALONG
Executes only one time
but only then if amount
is less than 25.

Using while:

GO BACK

Keeps repeating as long
as amount is less than
25.

FIGURE 14.1

The if body executes once; the while body can repeat more than once.

NOTE As with if, the while might never execute! If the 
condition is false going into while the first time, the body of 
the while doesn’t execute.

Using while
If you want to repeat a section of code until a certain condition becomes false, 
while is the way to go. Let’s revisit the counter up and down program for a 
fourth go-round and use while loops this time:
// Example program #1 from Chapter 14 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter14ex1.c

/* This program increases a counter from 1 to 5, printing updates 

and then counts it back down to 1. However, it uses while loops and 

the increment and decrement operators */

#include <stdio.h>

15_9780789751980_ch14.indd   125 7/17/13   12:27 PM



126 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

main()

{

    int ctr = 0;

    while (ctr < 5)

    {

        printf("Counter is at %d.\n", ++ctr);

    }

    while (ctr > 1)

    {

        printf("Counter is at %d.\n", --ctr);

    }

    return 0;

    }

You might be getting a little sick of our “Counter is at…” code example, but using 
different statements, formats, and functions to accomplish the same task is an 
excellent method to show how new skills can help you execute a task differently or 
more efficiently.

When comparing this listing to the previous times you wrote programs to accom-
plish the same goal, you can see that your number of lines decreases significantly 
when using a loop. Previously, you needed to type five printf() statements for 
the count up and then type another four to count down. However, by using while 
loops, you need only one printf() statement in the count up loop and one in 
the count down loop, which streamlines the program.

The variable ctr is initially set to 0. The first time while executes, i is less than 
5, so the while condition is true and the body of the while executes. In the 
body, a newline is sent to the screen and ctr is incremented. The second time 
the condition is tested, ctr has a value of 1, but 1 is still less than 5, so the 
body executes again. The body continues to execute until ctr is incremented to 
5. Because 5 is not less than 5 (they are equal), the condition becomes false 
and the loop stops repeating. The rest of the program is then free to execute, 
leading to the second while loop that counts down from 5 to 1, when it eventu-
ally makes the second condition false and ends the loop.

15_9780789751980_ch14.indd   126 7/17/13   12:27 PM



CHAPTER 14  CODE REPEAT—USING LOOPS TO SAVE TIME AND EFFORT 127

TIP If ctr were not incremented in the while loop, the 
printf() would execute forever or until you pressed Ctrl+Break 
to stop it.

Using do…while
while also can be used in conjunction with the do statement. When used as a 
pair, the statements normally are called do…while statements or the do…while 
loop. The do…while behaves almost exactly like the while loop. Here is the for-
mat of do…while:
do

{ block of one or more C statements; }

while (condition)

NOTE The do and while act like wrappers around the body 
of the loop. Again, braces are required if the body has more than 
a single statement.

Use a do…while in place of a while only when the body of the loop must 
execute at least one time. The condition is located at the bottom of the do…
while loop, so C can’t test the condition until the loop finishes the first time.

Here’s a quick program that uses a do…while loop. It asks the user for two num-
bers and then gives the resulting value if the two inputs are multiplied. It then asks 
the user if he or she would like to multiply two more numbers. As long as the user 
keeps typing Y, the program keeps asking for numbers to multiply. Only answer-
ing N breaks the loop.
// Example program #2 from Chapter 14 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter14ex2.c

/* This program will multiply two numbers and display the result for 

as long as the user wants. Answering 'N' will break the loop. */

#include <stdio.h>

main()

{

15_9780789751980_ch14.indd   127 7/17/13   12:27 PM



128 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    float num1, num2, result;

    char choice;

    do {

        printf("Enter your first number to multiply: ");

        scanf(" %f", &num1);

        printf("Enter your second number to multiply: ");

        scanf(" %f", &num2);

        result = num1 * num2;

        printf("%.2f times %.2f equals %.2f\n\n", 

             num1, num2, result);

        printf("Do you want to enter another pair of numbers ");

        printf("to multiply (Y/N): ");

        scanf(" %c", &choice);

        // If the user enters a lowercase n, this if statement will 

        // convert it to an N

        if (choice == 'n')

            {

                choice = 'N';

            }

    } while (choice != 'N');

    return 0;

    }

Although this program is simple and straightforward, it demonstrates an effective 
use of a do…while loop. Again, you use the do…while construct instead of while 
when you want to ensure that the code within the loop executes at least once. So 
after getting two floating-point numbers from the user and displaying the result, the 
program asks the user if he or she wants to multiply two new numbers. If the user 
enters Y (or any character other than N), the loop begins again from the beginning.

15_9780789751980_ch14.indd   128 7/17/13   12:27 PM



CHAPTER 14  CODE REPEAT—USING LOOPS TO SAVE TIME AND EFFORT 129

Without the if statement in the loop, a lowercase n would not terminate the 
loop, but it seems obvious that a user who enters n is looking to terminate the 
loop and just forgot to use the Shift key. As mentioned earlier in the book, when 
programming, you cannot always count on the user entering what you want, so 
when you can, you should anticipate common data-entry errors and provide work-
arounds. Converting a lowercase n to N is not the only way you could account for 
this possibility. You could also use a logical AND operator in the while portion of 
the loop, as follows:

    } while (choice != 'N'&& choice != 'n');

In plain language, this is telling the program to keep running as long as the 
choice is not an uppercase N or a lowercase n.

TIP Chapter 19, “Getting More from Your Strings,” explains a 
simpler method to test for an uppercase Y or N or a lowercase y 
or n with a built-in function named toupper().

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you how to repeat sections of code. The 
while and do…while loops both repeat statements within their statement bod-
ies. The difference between the two statements lies in the placement of the rela-
tional test that controls the loops. The while statement tests the relation at the 
top of the loop, and the do…while statement tests the relation at the bottom of 
the loop, forcing all its statements to execute at least once. Key concepts covered 
in this chapter include:

 • Use while or do…while when you need to repeat a section of code.

 • Make sure that the body of the while or do…while loop changes something 
in the condition, or the loop will repeat forever.

 • Remember that loops differ from if because the body of an if executes only 
once instead of many times if the condition is true.

 • Don’t put a semicolon after the while condition’s closing parenthesis. If 
you do, an infinite loo p will occur.

15_9780789751980_ch14.indd   129 7/17/13   12:27 PM



This page intentionally left blank 



LOOKING FOR ANOTHER 
WAY TO CREATE LOOPS
Another type of C loop is called the for loop. A for loop offers more 

control than while and do-while. With a for loop, you can specify 

exactly how many times you want to loop; with while loops, you must 

continue looping as long as a condition is true.

C programs have room for all three kinds of loops. Sometimes one loop 

fits one program’s requirements better than another. For example, if you 

wrote a program to handle customer orders as customers purchase items 

from the inventory, you would need to use a while loop. The program 

would process orders while customers came through the door. If 100 cus-

tomers happened to buy things, the while loop would run 100 times. At 

the end of the day, you might want to add the 100 customer purchases 

to get a total for the day. You could then use a for loop because you 

would then know exactly how many times to loop.

I N  T H I S  C H A P T E R

15
• Looking for another way to repeat code

• Working with for

16_9780789751980_ch15.indd   131 7/17/13   12:27 PM



132 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE By incrementing counter variables, you can simulate a 
for loop with a while loop. You also can simulate a while with 
a for! Therefore, the kind of loop you use ultimately depends on 
which kind you feel comfortable with at the time.

for Repeat’s Sake!
As you can see from the lame title of this section, the for loop is important for 
controlling repeating sections of code. The format of for is a little strange:
for (startExpression; testExpression; countExpression)

{ block of one or more C statements; }

Perhaps a short example with actual code is easier to understand:
    for (ctr = 1; ctr <= 5; ctr++)

    {

        printf("Counter is at %d.\n", ctr);

    }

If you are looking at the code and thinking that it’s a bit familiar, you are right. 
This code would be the beginning of a fifth version of the count up/count down 
program, but one that used a for loop instead. Here’s how this for statement 
works: When the for begins, the startExpression, which is ctr = 1;, 
executes. The startExpression is executed only once in any for loop. The 
testExpression is then tested. In this example, the testExpression is ctr<= 
5;. If it is true—and it will be true the first time in this code—the body of the for 
loop executes. When the body of the loop finishes, the countExpression is 
executed (ctr is incremented).

TIP As you can see, indenting the body of a for loop helps 
separate the body of the loop from the rest of the program, mak-
ing the loop more readable. (The same is true for the other kinds 
of loops, such as do-while loops.)

That’s a lot to absorb in one full swoop, even in one paragraph. Let’s make it easy. 
Follow the line in Figure 15.1, which shows the order in which for executes. While 
following the line, reread the preceding paragraph. It should then make more 
sense to you.

16_9780789751980_ch15.indd   132 7/17/13   12:27 PM



CHAPTER 15  LOOKING FOR ANOTHER WAY TO CREATE LOOPS 133

for(ctr=1;ctr <=10;ctr++)

  {printf("Still counting...");

   printf("%d.\n", ctr);

   }

FIGURE 15.1

Following the order of for.

NOTE The for loop’s format is strange because of the 
embedded semicolons that are required. It is true that semico-
lons go only at the end of executable statements, but statements 
inside for loops are executable. For instance, the initial expres-
sion, ctr = 1;, is completed before the loop begins, as Figure 
15.1 shows.

Here is the very same loop written as a while statement:
ctr = 1;

while (ctr <= 5)

{

       printf("Counter is at %d.\n", ctr);

       ctr++;

}

Here is the output of this code:
Counter is at 1.

Counter is at 2.

Counter is at 3.

Counter is at 4.

Counter is at 5.

TIP If you follow Figure 15.1’s guiding line and read the pre-
ceding while loop, you’ll see that the for and while do the 
same thing. The ctr = 1; that precedes the while is the first 
statement executed in the for.

16_9780789751980_ch15.indd   133 7/17/13   12:27 PM



134 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

A do-while loop can’t really represent the for loop because the relational test 
is performed before the body of the for loop and after it in the do-while. As 
you might recall from the end of Chapter 14, “Code Repeat—Using Loops to Save 
Time and Effort,” the do-while test always resides at the bottom of the loop.

Working with for
The for loop reads a lot like the way you speak in everyday life. Consider this 
statement:

For each of our 45 employees, calculate the pay and print a check.

This statement leaves no room for ambiguity. There will be 45 employees, 45 pay 
calculations, and 45 checks printed. To make this loop work for even more compa-
nies, the program could prompt the user to enter how many employees will need 
to have payroll calculations and then use that entry for the loop as follows:
printf("How many employees in the organization? ");

scanf(" %d", &employees);

// Loop to calculate payroll for each employee

for (i=1; i <= employees; i++;)

{

       // Calculations for each employee follow…

for loops don’t always count up as the preceding two did. This for loop counts 
down before printing a message:
for (cDown = 10; cDown >0; cDown--)

{

       printf("%d.\n", cDown);

}

printf("Blast off!\n");

Here is the output of this code:
10

9

8

7

6

5

16_9780789751980_ch15.indd   134 7/17/13   12:27 PM



CHAPTER 15  LOOKING FOR ANOTHER WAY TO CREATE LOOPS 135

4

3

2

1

Blast off!

WARNING If the last expression in the for parentheses dec-
rements in some way, the initial value must be greater than the test 
value for the loop to execute. In the previous for statement, the 
initial value of 10 is greater than the testExpression's 0 
comparison.

You also do not have to increase or decrease your loop counter by 1. The follow-
ing for loop counts up by threes, beginning with 1:
for (i = 1; i < 18; i += 3)

{

       printf("%d ", i); // Prints 1, 4, 7, 10, 13, 16

}

The following code produces an interesting effect:
for (outer = 1; outer <= 3; outer++)

{

       for (inner = 1; inner <= 5; inner++)

       {

              printf("%d ", inner)

       }

       // Print a newline when each inner loop finishes

       printf("\n");

}

Here is the code’s output:
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

If you put a for loop in the body of another loop, you are nesting the loops. 
In effect, the inner loop executes as many times as the outer loop dictates. You 
might need a nested for loop if you wanted to print three lists of your top five 
customers. The outer loop would move from 1 to 3, while the inner loop would 
print the top five customers.

16_9780789751980_ch15.indd   135 7/17/13   12:27 PM



136 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Here’s a full program that executes a for loop based on the number of movies a 
user has claimed to see in the current year. It asks for the name of the movie and 
a rating on a scale of 1 to 10. It then tells the user what movie was ranked as a 
favorite and what movie was the least favorite:
// Example program #1 from Chapter 15 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter15ex1.c

/* This program will ask users how many movies they've seen this 

year, and then loop through asking the name of each movie and a 

rating from 1 to 10. It will remember their favorite movie and their 

least favorite movie. */

#include <stdio.h>

#include <string.h>

main()

{

    int ctr, numMovies, rating, favRating, leastRating;

    char movieName[40], favorite[40], least[40];

    //initialize the favRating to 0 so any movie with any rating of

    // 1 or higher will replace it and the leastRating to 10 so any

    // movie rated 9 or lower will replace it

    favRating = 0;

    leastRating = 10;

    // Find out how many movies the user has seen and can rate

    // The loop will continue until they enter a number more than 0

    do {

        printf("How many movies have you seen this year? ");

        scanf(" %d", &numMovies);

        // If the user enters 0 or a negative number, the program

16_9780789751980_ch15.indd   136 7/18/13   8:31 AM



CHAPTER 15  LOOKING FOR ANOTHER WAY TO CREATE LOOPS 137

        // will remind them to enter a positive number and prompt 

        // them again

        if (numMovies < 1)

        {

            printf("No movies! How can you rank them?\nTry again!\

n\n");

        }

    } while (numMovies < 1);

    for (ctr = 1; ctr <= numMovies; ctr++)

        {

                //Get the name of the movie and the user's rating

                printf("\nWhat was the name of the movie? ");

                printf("(1-word titles only!) ");

                scanf(" %s", movieName);

                printf("On a scale of 1 to 10, what would ");

                printf("you rate it? ");

                scanf(" %d", &rating);

                //Check whether it's their best-rated movie so far

                if (rating > favRating)

                {

                    strcpy(favorite, movieName);

                    favRating = rating;

                }

                //Check whether it's their worst-rated movie so far

                if (rating < leastRating)

                {

                    strcpy(least, movieName);

                    leastRating = rating;

                }

        }

16_9780789751980_ch15.indd   137 7/18/13   9:04 AM



138 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    printf("\nYour Favorite Movie was %s.\n", favorite);

    printf("\nYour Least-favorite Movie was %s.\n", least);

    return 0;

    }

Here is a sample output from the program:
How many movies have you seen this year? 5

What was the name of the movie? (1-word titles only!) Veranda

On a scale of 1 to 10, what would you rate it? 7

What was the name of the movie? (1-word titles only!) Easiness

On a scale of 1 to 10, what would you rate it? 3

What was the name of the movie? (1-word titles only!) TheJuggler

On a scale of 1 to 10, what would you rate it? 5

What was the name of the movie? (1-word titles only!) Kickpuncher

On a scale of 1 to 10, what would you rate it? 8

What was the name of the movie? (1-word titles only!) Celery

On a scale of 1 to 10, what would you rate it? 8

Your Favorite Movie was Kickpuncher

Your Least-favorite Movie was Easiness

16_9780789751980_ch15.indd   138 7/17/13   12:27 PM



CHAPTER 15  LOOKING FOR ANOTHER WAY TO CREATE LOOPS 139

Now, this program is a little long, but you should be able to follow it line by line, 
and the comments should help as well. It also combines the use of a do-while 
loop, a for loop, and some data tests using if statements. The first if statement 
serves as a data tester. You are asking users how many movies they’ve seen, and 
the code then loops through that number of movies to get titles and ratings. If the 
user enters 0 (or mistakenly enters a negative number), there will be no loop, so 
you give the user a chance to enter a correct number with a do-while loop.

Assigning 0 to favRating and 10 to leastRating might seem confusing at 
first, but once you are in the loop getting movie names and ratings, you need a 
baseline to compare each movie’s rating. Initially, you want the lowest possible 
rating for favorite so that any movie rated will become the favorite, and you want 
the highest possible rating for least favorite so that any movie rated will become 
the least favorite. This means that the first movie (in the code sample, Veranda) 
will become both the favorite and the least favorite movie of the user. But that 
makes sense—if you only saw one movie, it would be both the best and the worst, 
until you had something to compare.

When you enter additional movies, the two if statements in the loop see whether 
you liked the next movie more or less than your current top and bottom mov-
ies and make the appropriate change. In the code sample, the second movie, 
Easiness, had a rating of 3. This rating is not higher than Veranda’s 7, so Veranda 
remains the highest movie; now Easiness is the least favorite movie.

You will be able to account for a few issues with this program as you learn more 
about C. First is the limitation of scanf() when dealing with strings—it can only 
take one word without spaces. Obviously, most movies have multiple words in the 
title. When you learn additional input/output methods later in this book, you can 
adjust for this problem.

When you learn about other arrays, including pointer arrays, you will be able to 
keep all the movie names in a program like this. You will also learn how to sort 
data, so you can revisit this program and print a ranking of your favorite movies 
instead of listing just a favorite and a least favorite. The last problem also would 
be fixed with this listing because the program saves only one movie for each rank-
ing; if the user enters two equal values (such as Kickpuncher and Celery, in the 
sample output), only one can be listed as a favorite.

16_9780789751980_ch15.indd   139 7/17/13   12:27 PM



140 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you an additional way to form a loop of 
statements in C. The for statement gives you a little more control over the loop 
than either while or do-while. The for statement controls a loop with a vari-
able that is initialized and changed according to the expressions in the for state-
ment. Key concepts in this chapter include:

 • Use a for loop when you want to increment o r decrement a variable through 
a loop.

 • Remember that the for loop’s relational test is performed at the top of the 
loop.

 • Use a nested loop if you want to loop a certain number of times.

 • Don’t forget the semicolons inside the for loop—for requires them.

 • Don’t use an initial value that is less than the test value if you want to count 
down with for.

16_9780789751980_ch15.indd   140 7/17/13   12:27 PM



BREAKING IN AND OUT OF 
LOOPED CODE
This chapter doesn’t teach you how to use another kind of loop. Instead, 

this chapter extends the information you learned in the last two chapters. 

You have ways available to control the while loop in addition to a rela-

tional test, and you can change the way a for loop operates via means 

other than the counter variable.

The break and continue statements let you control loops for those 

special occasions when you want to quit a loop early or repeat a loop 

sooner than it would normally repeat.

I N  T H I S  C H A P T E R

16
• Taking a break

• Continuing to work

17_9780789751980_ch16.indd   141 7/17/13   12:27 PM



142 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Take a break
The break statement rarely, if ever, appears on a line by itself. Typically, break 
appears in the body of an if statement. The reason for this will be made clear 
shortly. Here is the format of break:

break;

NOTE break is easy, isn’t it? Yep, not much to it. However, 
keep in mind that break usually resides in the body of an if. In a 
way, if is the first part of almost every break.

break always appears inside a loop. The purpose of break is to terminate the 
current loop. When a loop ends, the code following the body of the loop takes 
over. When break appears inside a loop’s body, break terminates that loop 
immediately, and the rest of the program continues.

Here is a for loop that normally would print 10 numbers. Instead of printing 10, 
however, the break causes the loop to stop after printing 5 numbers.
for (i=0; i < 10; i++)

{

       printf("%d ", i)

       if (i == 4)

       {

              break;

       }

}

// Rest of program would follow.

As a real-world example, suppose a teacher wrote a program to average the 25 
students’ test scores. The following program keeps a running total of the 25 stu-
dents. However, if a student or two missed the test, the teacher wouldn’t want to 
average the entire 25 student scores. If the teacher enters a -1.0 for a test score, 
the -1.0 triggers the break statement and the loop terminates early.
// Example program #1 from Chapter 16 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter16ex1.c

17_9780789751980_ch16.indd   142 7/17/13   12:27 PM



CHAPTER 16  BREAKING IN AND OUT OF LOOPED CODE 143

/* This program will ask users to input test grades for the 25 

students in a class and then compute an average test grade. If fewer 

than 25 students took the test, the user can enter -1 as a grade 

and break the loop, and only those entered grades will be used to 

compute the average. */

#include <stdio.h>

main()

{

    int numTest;

    float stTest, avg, total = 0.0;

    // Asks for up to 25 tests

    for (numTest = 0; numTest < 25; numTest++)

        {

                // Get the test scores, and check if -1 was entered

                printf("\nWhat is the next student's test score? ");

                scanf(" %f", &stTest);

                if (stTest < 0.0)

                {

                  break;

                }

                total += stTest;

        }

    avg = total / numTest;

    printf("\nThe average is %.1f%%.\n", avg);

    return 0;

    }

17_9780789751980_ch16.indd   143 7/18/13   8:32 AM



144 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Before discussing the program, take a look at a sample run of it:
What is the next student's test score? 89.9

What is the next student's test score? 92.5

What is the next student's test score? 51.0

What is the next student's test score? 86.4

What is the next student's test score? 78.6

What is the next student's test score? -1

The average is 79.7%

The teacher had a lot of sick students that day! If all 25 students had shown up, 
the for loop would have ensured that exactly 25 test scores were asked for. 
However, because only five students took the test, the teacher had to let the pro-
gram know, via a negative number in this case, that she was done entering the 
scores and that she now wanted an average.

TIP To print the percent sign at the end of the final average, 
two % characters have to be used in the printf() control string. 
C interprets a percent sign as a control code unless you put two 
of them together, as done in this program. Then it still interprets 
the first percent sign as a control code for the second. In other 
words, the percent sign is a control code for itself.

WARNING break simply offers an early termination of a 
while, do-while, or for loop. break can’t exit from if, which 
isn’t a loop statement. Figure 16.1 helps show the action of 
break.

printf("How many numbers do you want to see?");

scanf("%d",&num);

for (i=1; i<10;i++)

{

}

printf("Counting up...%d\n" ,i);

if (i== num)

{break;}

/* Rest of program follows*/

Normal
flow of
the loop

If
executes
break

FIGURE 16.1

break terminates a loop earlier than usual.

17_9780789751980_ch16.indd   144 7/17/13   12:27 PM



CHAPTER 16  BREAKING IN AND OUT OF LOOPED CODE 145

Let’s continue Working
Whereas break causes a loop to break early, continue forces a loop to continue 
early. (So that’s why they’re named that way!) Depending on the complexity of 
your for, while, or do-while loop, you might not want to execute the entire 
body of the loop every iteration. continue says, in effect, “C, please ignore the 
rest of this loop’s body this iteration of the loop. Go back up to the top of the 
loop and start the next loop cycle.”

TIP The word iteration is a fancy computer name for the cycle 
of a loop. Programmers sometimes think they will keep their jobs 
if they use words that nobody else understands.

The following program shows off continue nicely. The program contains a for 
loop that counts from 1 to 10. If the loop variable contains an odd number, the 
message I'm rather odd... prints, and the continue instructs C to ignore 
the rest of the loop body because it prints Even up! for the even numbers that 
are left.
// Example program #2 from Chapter 16 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter16ex2.c

/* This program loops through 10 numbers and prints a message that

    varies whether the program is odd or even. It tests for odd and

    if the number is odd, it prints the odd message and then starts

    the next iteration of the loop using continue. Otherwise, it

    prints the even message. */

#include <stdio.h>

main()

{

    int i;

    // Loops through the numbers 1 through 10

    for (i = 1; i <= 10; i++)

        {

17_9780789751980_ch16.indd   145 7/17/13   12:27 PM



146 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

                if ((i%2) == 1) // Odd numbers have a remainder of 1

                {

                  printf("I'm rather odd...\n");

                  // Will jump to the next iteration of the loop

                  continue;

                }

                printf("Even up!\n");

        }

    return 0;

    }

Here is the program’s output:
I'm rather odd…

Even up!

I'm rather odd…

Even up!

I'm rather odd…

Even up!

I'm rather odd…

Even up!

I'm rather odd…

Even up!

NOTE As with break, continue is rarely used without a pre-
ceding if statement of some kind. If you always wanted to con-
tinue, you wouldn’t have entered the last part of the loop’s body. 
You want to use continue only in some cycles of the loop.

17_9780789751980_ch16.indd   146 7/17/13   12:27 PM



CHAPTER 16  BREAKING IN AND OUT OF LOOPED CODE 147

THE ABSOLUTE MINIMUM
The goal of this chapter was to teach you how to control loops better with the 
break and continue statements. The while, do-while, and for loops all can 
be terminated early with break or continued early with continue. Key concepts 
covered in this chapter included the following:

 • Use break to terminate for, while, or do-while loops early.

 • Use continue to force a new cycle of a loop.

 • Don’t use break or continue without some sort of relational test before 
them.

17_9780789751980_ch16.indd   147 7/17/13   12:27 PM



This page intentionally left blank 



MAKING THE case FOR 
THE switch STATEMENT
The if statement is great for simple testing of data, especially if your data 

tests have only two or three possibilities. You can use if to test for more 

than two values, but if you do, you have to nest several if statements 

inside one another, and that can get confusing and hard to maintain.

Consider for a moment how you execute code based on a user’s 

response to a menu. A menu is a list of options from which to select, such 

as this one:

What do you want to do?

1. Add New Contact

2. Edit Existing Contact

3. Call Contact

4. Text Contact

5. Delete Contact

6. Quit the Program

What is your choice?

I N  T H I S  C H A P T E R

17
• Testing multiple cases with switch

• Combining break with switch

18_9780789751980_ch17.indd   149 7/17/13   12:27 PM



150 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE When you create menus that ask for user input, you 
are creating a user interface.

It would take five if-else statements, nested inside one another, to handle all 
these conditions, as you can see here:
if (userAns == 1)

       {

              // Perform the Add Contact Routine

       }

else if (userAns == 2)

       {

             //Perform the Edit Contact Routine

       }

else if (userAns == 3)

       {

             //Perform the Call Contact Routine

       }

else if (userAns == 4)

       {

             //Perform the Text Contact Routine

       }

else if (userAns == 5)

       {

             //Perform the Delete Contact Routine

       }

else

       {

             //Perform the Quit Routine

       }

Nothing is wrong with nested if statements, but the C switch statement is 
clearer for multiple conditions.

18_9780789751980_ch17.indd   150 7/17/13   12:27 PM



CHAPTER 17  MAKING THE CASE FOR THE SWITCH STATEMENT 151

Making the switch
The switch statement has one of the longest formats of any statement in C (or 
just about any other language). Here is the format of switch:
switch (expression)

{

       case (expression1): { one or more C statements; }

       case (expression2): { one or more C statements; }

       case (expression3): { one or more C statements; }

// This would keep going for however many case statements to test

       default: { one or more C statements; }

TIP As with most statements, the actual use of switch is a lot 
less intimidating than its format leads you to believe.

The menu shown earlier is perfect for a series of function calls. The problem is 
that this book has not yet discussed function calls, except for a handful of built-in 
functions such as printf() and scanf(). The following simple program uses a 
switch statement to print an appropriate message, depending on the choice the 
user makes.

TIP Ordinarily, a function call would replace the printf() 
statements you see after each case. After you read Chapter 31, 
“Passing Variables to Your Functions,” you’ll understand how to 
use function calls to perform case actions.

// Example program #1 from Chapter 17 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter17ex1.c

/* This program presents a menu of choices, gets the user's choice, 

and then uses the switch statement to execute a line or two of code 

based on that choice. (What the user wants to do is not truly 

implemented—it is just a series of stubs to teach the value of the 

switch statement. */

#include <stdio.h>

#include <stdlib.h>

18_9780789751980_ch17.indd   151 7/18/13   8:33 AM



152 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

main()

{

    int choice;

    printf("What do you want to do?\n");

    printf("1. Add New Contact\n");

    printf("2. Edit Existing Contact\n");

    printf("3. Call Contact\n");

    printf("4. Text Contact\n");

    printf("5. Exit\n");

    do

    {

        printf("Enter your choice: ");

        scanf(" %d", &choice);

        switch (choice)

        {

            case (1): printf("\nTo add you will need the ); 

                      printf("contact's\n");

                      printf("First name, last name, and number.\n");

                      break;

            case (2): printf("\nGet ready to enter the name of ");

                      printf("name of the\n");

                      printf("contact you wish to change.\n");

                      break;

            case (3): printf("\nWhich contact do you ");

                      printf("wish to call?\n");

                      break;

            case (4): printf("\nWhich contact do you "); 

                      printf("wish to text?\n");

                      break;

            case (5): exit(1); //Exits the program early

            default:  printf("\n%d is not a valid choice.\n", choice);

                      printf("Try again.\n");

                      break;

18_9780789751980_ch17.indd   152 7/17/13   12:27 PM



CHAPTER 17  MAKING THE CASE FOR THE SWITCH STATEMENT 153

        }

    } while ((choice < 1) || (choice > 5));

    return 0;

    }

The case statements determine courses of action based on the value of choice. 
For example, if choice equals 3, the message Which contact do you 
wish to call? prints. If choice equals 5, the program quits using the built-in 
exit() function.

WARNING Anytime you need to terminate a program 
before its natural conclusion, use the exit() function. The value 
you place in the exit() parentheses is returned to your operat-
ing system. Most beginning programmers ignore the return value 
and put either a 0 or a 1 in the parentheses. You must remember 
to add <stdlib.h> with the #include directive in every pro-
gram that uses exit().

The do-while loop keeps the user honest. If the user enters something other 
than a number from 1 to 5, the ...is not a valid choice. message 
prints, thanks to the default keyword. C ensures that if none of the other cases 
matches the variable listed after switch, the default statements execute.

default works like else, in a way. else takes care of an action if an if test is 
false, and default takes care of an action if none of the other case conditions 
successfully matches the switch variable. Although default is optional (as is 
else), it’s good programming practice to use a default to handle unexpected 
switch values.

TIP The switch variable can be either an integer or a char-
acter variable. Do not use a float or a double for the switch 
test.

break and switch
The switch statement shown earlier has several break statements scattered 
throughout the code. The break statements ensure that only one case executes. 
Without the break statements, the switch would “fall through” to the other 

18_9780789751980_ch17.indd   153 7/17/13   12:27 PM



154 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

case statements. Here is what would happen if the break statements were 
removed from the switch and the user answered with a choice of 2:
Get ready to enter the name of the

contact you wish to change.

Which contact do you wish to call?

Which contact do you wish to text?

The break keeps switch case statements from running together.

NOTE The only reason the default condition’s message did 
not print is that the exit() function executed inside case (5).

Efficiency Considerations
case statements don’t have to be arranged in any order. Even default doesn’t 
have to be the last case statement. As a matter of fact, the break after the 
default statement isn’t needed as long as default appears at the end of 
switch. However, putting break after default helps ensure that you move both 
statements if you ever rearrange the case statements. If you were to put default 
higher in the order of case statements, default would require a break so that 
the rest of the case statements wouldn’t execute.

TIP You can rearrange the case statements for efficiency. 
Put the most common case possibilities toward the top of the 
switch statement so that C doesn’t have to search down into the 
case statements to find a matching case.

Let’s add a second program to demonstrate the switch statement, as well as a 
program that uses two levels of menus.
// Example program #2 from Chapter 17 of Absolute Beginner's Guide to 

// C, 3rd Edition

// File Chapter17ex2.c

/* This program presents a menu of choices (three different decades), 

gets the user's choice, and then presents a secondary menu (sports, 

entertainment, and politics).

When the user makes her second choice, it prints a list of key 

information from that specific decade in that specific category. */

18_9780789751980_ch17.indd   154 7/17/13   12:27 PM



CHAPTER 17  MAKING THE CASE FOR THE SWITCH STATEMENT 155

#include <stdio.h>

#include <stdlib.h> //Remember, if you plan to use exit(), you need  

                    // this header file

main()

{

    // Despite being a long program, you only need two variables:

    // one for the first menu and one for the second

    int choice1;

    int choice2;

    // The potential decade choices

    printf("What do you want to see?\n");

    printf("1. The 1980's\n");

    printf("2. The 1990's\n");

    printf("3. The 2000's\n");

    printf("4. Quit\n");

    // The top-menu choice and the switch statement that makes the 

    // resulting

    // information appear are encased in a do-while loop that 

    // ensures one

    // of the 4 menu choices are made

    do

    {

        printf("Enter your choice: ");

        scanf(" %d", &choice1);

        switch (choice1)

        {

            // In the first case, the user picked the 1980s. Now it  

            // time to see what specific info they need.

18_9780789751980_ch17.indd   155 7/17/13   12:27 PM



156 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

            case (1):

            {

                printf("\n\nWhat would you like to see?\n");

                printf("1. Baseball\n");

                printf("2. The Movies\n");

                printf("3. US Presidents\n");

                printf("4. Quit\n");

                printf("Enter your choice: ");

                scanf(" %d", &choice2);

                if (choice2 == 1)

                {

                    printf("\n\nWorld Series Champions ");

                    printf("of the 1980s:\n");

                    printf("1980: Philadelphia Phillies\n");

                    printf("1981: Los Angeles Dodgers\n");

                    printf("1982: St. Louis Cardinals\n");

                    printf("1983: Baltimore Orioles\n");

                    printf("1984: Detroit Tigers\n");

                    printf("1985: Kansas City Royals\n");

                    printf("1986: New York Mets\n");

                    printf("1987: Minnesota Twins\n");

                    printf("1988: Los Angeles Dodgers\n");

                    printf("1989: Oakland A's\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 2)

                {

                    printf("\n\nOscar-Winning Movies in the 1980s:\n");

                    printf("1980: Ordinary People\n");

                    printf("1981: Chariots of Fire\n");

                    printf("1982: Gandhi\n");

                    printf("1983: Terms of Endearment\n");

                    printf("1984: Amadeus\n1985: Out of Africa\n");

                    printf("1986: Platoon\n");

18_9780789751980_ch17.indd   156 7/17/13   12:27 PM



CHAPTER 17  MAKING THE CASE FOR THE SWITCH STATEMENT 157

                    printf("1987: The Last Emperor\n");

                    printf("1988: Rain Man\n");

                    printf("1989: Driving Miss Daisy");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 3)

                {

                    printf("\n\nUS Presidents in the 1980s:\n");

                    printf("1980: Jimmy Carter\n");

                    printf("1981-1988: Ronald Reagan\n");

                    printf("1989: George Bush\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 4)

                {

                    exit(1);

                } else

                {

                    printf("Sorry, that is not a valid choice!\n");

                    break;

                }

            }

            // This case is for the 1990s.

            // Unlike the top menu, there isn't a data-validation 

            // do-while loop

            case (2):

            {

                printf("\n\nWhat would you like to see?\n");

                printf("1. Baseball\n");

                printf("2. The Movies\n");

                printf("3. US Presidents\n");

                printf("4. Quit\n");

                printf("Enter your choice: ");

18_9780789751980_ch17.indd   157 7/17/13   12:27 PM



158 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

                scanf(" %d", &choice2);

                if (choice2 == 1)

                {

                    printf("\n\nWorld Series Champions of ");

                    printf("the 1990s:\n");

                    printf("1990: Cincinnati Reds\n");

                    printf("1991: Minnesota Twins\n");

                    printf("1992: Toronto Blue Jays\n");

                    printf("1993: Toronto Blue Jays\n");

                    printf("1994: No World Series\n");

                    printf("1995: Atlanta Braves\n");

                    printf("1996: New York Yankees\n");

                    printf("1997: Florida Marlins\n");

                    printf("1998: New York Yankees\n");

                    printf("1999: New York Yankees\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 2)

                {

                    printf("\n\nOscar-Winning Movies in ");

                    printf("the 1990s:\n");

                    printf("1990: Dances with Wolves\n");

                    printf("1991: The Silence of the Lambs\n");

                    printf("1992: Unforgiven\n");

                    printf("1993: Schindler's List\n");

                    printf("1996: The English Patient\n");

                    printf("1997: Titanic\n");

                    printf("1998: Shakespeare in Love\n");

                    printf("1999: American Beauty\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 3)

                {

                    printf("\n\nUS Presidents in the 1990s:\n");

                    printf("1990-1992: George Bush\n");

18_9780789751980_ch17.indd   158 7/17/13   12:27 PM



CHAPTER 17  MAKING THE CASE FOR THE SWITCH STATEMENT 159

                    printf("1993-1999: Bill Clinton\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 4)

                {

                    exit(1);

                } else

                {

                    printf("Sorry, that is not a valid choice!\n");

                    break;

                }

            }

            // The section for when the user selects the 2000s

            case (3):

            {

                printf("\n\nWhat would you like to see?\n");

                printf("1. Baseball\n");

                printf("2. The Movies\n");

                printf("3. US Presidents\n");

                printf("4. Quit\n");

                printf("Enter your choice: ");

                scanf(" %d", &choice2);

                if (choice2 == 1)

                {

                    printf("\n\nWorld Series Champions of ");

                    printf("the 2000s:\n");

                    printf("2000: New York Yankees\n");

                    printf("2001: Arizona Diamondbacks\n");

                    printf("2002: Anaheim Angels\n");

                    printf("2003: Florida Marlins\n");

                    printf("2004: Boston Red Sox\n");

                    printf("2005: Chicago White Sox\n");

                    printf("2006: St. Louis Cardinals\n");

18_9780789751980_ch17.indd   159 7/17/13   12:27 PM



160 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

                    printf("2007: Boston Red Sox\n");

                    printf("2008: Philadelphia Phillies\n");

                    printf("2009: New York Yankees\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 2)

                {

                    printf("\n\nOscar-Winning Movies in ");

                    printf("the 2000s:\n");

                    printf("2000: Gladiator\n");

                    printf("2001: A Beautiful Mind\n");

                    printf("2002: Chicago\n2003: The ");

                    printf("Lord of the Rings: The ");

                    printf("Return of the King\n");

                    printf("2004: Million Dollar Baby\n");

                    printf("2005: Crash\n");

                    printf("2006: The Departed\n");

                    printf("2007: No Country for Old Men\n");

                    printf("2008: Slumdog Millionaire\n");

                    printf("2009: The Hurt Locker\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 3)

                {

                    printf("\n\nUS Presidents in the 2000s:\n");

                    printf("2000: Bill Clinton\n");

                    printf("2001-2008: George Bush\n");

                    printf("2009: Barrack Obama\n");

                    printf("\n\n\n");

                    break;

                } else if (choice2 == 4)

                {

                    exit(1);

                } else

                {

18_9780789751980_ch17.indd   160 7/17/13   12:27 PM



CHAPTER 17  MAKING THE CASE FOR THE SWITCH STATEMENT 161

                    printf("Sorry, that is not a valid choice!\n");

                    break;

                }

            }

            case (4):

                exit (1);

            default:  printf("\n%d is not a valid choice.\n", 

                             choice1);

                      printf("Try again.\n");

                      break;

        }

    } while ((choice1 < 1) || (choice1 > 4));

    return 0;

    }

Now, this might look intimidating at first glance, but consider a few things. First 
of all, you are more than halfway through this book, so have a little faith in your C 
knowledge. Second, long does not mean hard—just break down the code section 
by section, and you’ll find nothing too intimidating in this code.

This program has two levels of menus to it. At the top menu, you are asking the 
user to select a specific decade: the 1980s, the 1990s, or the 2000s. After the 
user picks 1, 2, or 3 for the chosen decade (or 4 to quit the program), a switch 
statement sends the program to the next level of menus. The user then gets infor-
mation about sports (specifically baseball), the movies, or U.S. presidents. Within 
each case section of code, if and else statements test the user’s entry to pres-
ent the information they want to see.

You might be thinking, “Hey, the switch statement was a great idea for the top 
menu—why not use it for the next level of menu choices as well?” Well, although 
you can nest if statements in other if statements and nest for statements 
within other for statements, nesting switch statements is not a good idea, par-
ticularly when the default choices start overlapping. It confuses your compiler, 
and the program will not run.

Another note is that, in the first program, you did not enter open and closing 
braces for the statements after each case (expression): statement, but here 
you did. The braces are not needed, but with more complex blocks of code, the 
braces can help keep things clear.

18_9780789751980_ch17.indd   161 7/17/13   12:27 PM



162 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP You can replace the repeated code sections in the second-
level menus with single lines of code when you learn to write your 
own functions later in the book.

THE ABSOLUTE MINIMUM
The goal of this chapter was to explain the C switch statement. switch analyzes 
the value of an integer or character variable and executes one of several sections 
of code called cases. You can write equivalent code using embedded if state-
ments, but switch is clearer—especially when your program needs to analyze 
a user’s response to a menu and execute sections of code accordingly. Key con-
cepts from this chapter include:

 • Use switch to code menu selections and other types of applications that 
need to select from a variety of values.

 • Use an integer or character value in switch because float and double 
values can’t be matched properly.

 • Put a break statement at the end of each case chunk of code if you don’t 
want the subsequent case statements to execute.

 • Don’t use nested if statements when a switch statement will work instead. 
switch is a clearer statement.

18_9780789751980_ch17.indd   162 7/17/13   12:27 PM



INCREASING YOUR 
PROGRAM’S OUTPUT 
(AND INPUT)
You can produce input and output in more ways than with the scanf() 

and printf() functions. This chapter shows you some of C’s built-in I/O 

functions that you can use to control I/O. You can use these simple func-

tions to build powerful data-entry routines of your own.

These functions offer the primitive capability to input and output one 

character at a time. Of course, you also can use the %c format specifier 

with scanf() and printf() for single characters; however, the charac-

ter I/O functions explained here are a little easier to use, and they pro-

vide some capabilities that scanf() and printf() don’t offer.

I N  T H I S  C H A P T E R

18
• Using putchar() and getchar()

• Dealing with the newline consideration

• Getting a little faster with getch()

19_9780789751980_ch18.indd   163 7/17/13   12:27 PM



164 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

putchar() and getchar()
getchar() gets a single character from the keyboard, and putchar() sends a 
single character to the screen. Figure 18.1 shows you what happens when you use 
these functions. They work basically the way you think they do. You can use them 
just about anytime you want to print or input a single character into a variable.

putchar( )

getchar( )

A

G

G

A

Variable

Screen

Keyboard

Data

A

FIGURE 18.1

getchar() and putchar() input and output single characters.

TIP Always include the stdio.h header file when using 
this chapter’s I/O functions, just as you do for printf() and 
scanf().

The name getchar() sounds like “get character,” and putchar() sounds like 
“put character.” Looks as though the designers of C knew what they were doing!

The following program prints C is fun, one character at a time, using 
putchar() to print each element of the character array in sequence. Notice 
that strlen() is used to ensure that the for doesn’t output past the end of the 
string.
// Example program #1 from Chapter 18 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter18ex1.c

/* This program is nothing more than a simple demonstration of the 

putchar() function. */

19_9780789751980_ch18.indd   164 7/17/13   12:27 PM



CHAPTER 18  INCREASING YOUR PROGRAM’S OUTPUT (AND INPUT) 165

// putchar() is defined in stdio.h, but string.h is needed for the 

// strlen() function

#include <stdio.h>

#include <string.h>

main()

{

       int i;

       char msg[] = "C is fun";

       for (i = 0; i < strlen(msg); i++)

       {

              putchar(msg[i]); //Outputs a single character

       }

       putchar('\n'); // One line break after the loop is done.

       return(0);

}

The getchar() function returns the character input from the keyboard. 
Therefore, you usually assign the character to a va riable or do something else with 
it. You can put getchar() on a line by itself, like this:

getchar();  /* Does nothing with the character you get */

However, most C compilers warn you that this statement is rather useless. The 
getchar() function would get a character from the keyboard, but then nothing 
would be done with the character.

Here is a program that gets one character at a time from the keyboard and stores 
the collected characters in a character array. A series of putchar() functions then 
prints the array backward.
// Example program #2 from Chapter 18 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter18ex2.c

/* This program is nothing more than a simple demonstration of the 

getchar() function. */

19_9780789751980_ch18.indd   165 7/17/13   12:27 PM



166 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

// getchar() is defined in stdio.h, but string.h is needed for the 

// strlen() function

#include <stdio.h>

#include <string.h>

main()

{

       int i;

       char msg[25];

       printf("Type up to 25 characters and then press Enter...\n");

       for (i = 0; i < 25; i++)

       {

              msg[i] = getchar(); //Outputs a single character

               if (msg[i] == '\n')

              {

                  i--;

                  break;

            }

       }

       putchar('\n'); // One line break after the loop is done.

       for (; i >= 0; i--)

       {

           putchar(msg[i]);

       }

       putchar('\n');

       return(0);

}

19_9780789751980_ch18.indd   166 7/17/13   12:27 PM



CHAPTER 18  INCREASING YOUR PROGRAM’S OUTPUT (AND INPUT) 167

NOTE Notice that the second for loop variable i has no 
initial value. Actually, it does. i contains the last array subscript 
entered in the previous getchar() for loop. Therefore, the sec-
ond for loop continues with the value of i left by the first for 
loop.

The getchar() input character typically is defined as an int, as done here. 
Integers and characters are about the only C data types you can use interchange-
ably without worry of typecasts. In some advanced applications, getchar() can 
return a value that won’t work in a char data type, so you’re safe if you use int.

Aren’t you glad you learned about break? The program keeps getting a char-
acter at a time until the user presses Enter (which produces a newline \n escape 
sequence). break stops the loop.

The Newline Consideration
Although getchar() gets a single character, control isn’t returned to your pro-
gram until the user presses Enter. The getchar() function actually instructs C 
to accept input into a buffer, which is a memory area reserved for input. The buf-
fer isn’t released until the user presses Enter, and then the buffer’s contents are 
released a character at a time. This means two things. One, the user can press the 
Backspace key to correct bad character input, as long as he or she hasn’t pressed 
Enter. Two, the Enter keypress is left on the input buffer if you don’t get rid of it.

Getting rid of the Enter keypress is a problem that all beginning C programmers 
must face. Several solutions exist, but none is extremely elegant. Consider the fol-
lowing segment of a program:
printf("What are your two initials?\n");

firstInit = getchar();

lastInit = getchar();

You would think that if the user typed GT, the G would go in the variable 
firstInit and the T would go in lastInit, but that’s not what happens. The 
first getchar() doesn’t finish until the user presses Enter because the G was 
going to the buffer. Only when the user presses Enter does the G leave the buffer 
and go to the program—but then the Enter is still on the buffer! Therefore, the 
second getchar() sends that Enter (actually, the \n that represents Enter) to 
lastInit. The T is still left for a subsequent getchar() (if there is one).

19_9780789751980_ch18.indd   167 7/17/13   12:27 PM



168 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP One way to fix this problem is to insert an extra 
getchar() that captures the Enter but doesn’t do anything 
with it.

Here is a workaround for the initial-getting problem:
printf("What are your two initials?\n");

firstInit = getchar();

n1 = getchar();

lastInit = getchar();

n1 = getchar();

This code requires that the user press Enter between each initial. You don’t have 
to do anything with the nl variable because nl exists only to hold the in-between 
newline. You don’t even have to save the newline keypress in a variable. The fol-
lowing code works just like the last:
printf("What are your two initials?\n");

firstInit = getchar();

getchar(); // Discards the newline

lastInit = getchar();

getchar(); // Discards the newline

Some C compilers issue warning messages when you compile programs with 
a standalone getchar() on lines by themselves. As long as you use these 
getchar()s for discarding Enter keypresses, you can ignore the compiler warn-
ings.

You also can request the two initials by requiring the Enter keypress after the user 
enters the two initials, like this:
printf("What are your two initials?\n");

firstInit = getchar();

lastInit = getchar();

getchar();

If the user types GP and then presses Enter, the G resides in the firstInit vari-
able and the P resides in the lastInit variable.

19_9780789751980_ch18.indd   168 7/17/13   12:27 PM



CHAPTER 18  INCREASING YOUR PROGRAM’S OUTPUT (AND INPUT) 169

A Little Faster: getch()
A character input function named getch() helps eliminate the leftover Enter 
keypress that getchar() leaves. getch() is unbuffered—that is, getch() gets 
whatever keypress the user types immediately and doesn’t wait for an Enter key-
press. The drawback to getch() is that the user can’t press the Backspace key to 
correct bad input. For example, with getchar(), a user could press Backspace 
if he or she typed a B instead of a D. The B would be taken off the buffer by the 
Backspace, and the D would be left for getchar() to get after the user pressed 
Enter. Because getch() does not buffer input, there is no chance of the user 
pressing Backspace. The following code gets two characters without an Enter key-
press following each one:
printf("What are your two initials?\n");

firstInit = getch();

lastInit = getch();

getch() is a little faster than getchar() because it doesn’t wait for an Enter 
keypress before grabbing the user’s keystrokes and continuing. Therefore, 
you don’t need a standalone getch() to get rid of the \n as you do with 
getchar().

WARNING getch() does not echo the input characters 
to the screen as getchar() does. Therefore, you must follow 
getch() with a mirror-image putch() if you want the user to 
see onscreen the character he or she typed. To echo the initials, 
you could do this:

printf("What are your two initials?\n");

firstInit = getch();

putch(firstInit);

lastInit = putch();

putch(lastInit);

The next chapter explains more built-in functions, including two that quickly input 
and output strings as easily as this chapter’s I/O functions work with characters.

19_9780789751980_ch18.indd   169 7/17/13   12:27 PM



170 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
This chapter’s goal was to explain a few additional input and output functions. 
The functions presented here are character I/O functions. Unlike scanf() and 
printf(), the getchar(), getch(), putchar(), and putch() functions input 
and output single characters at a time. Key concepts from this chapter include:

 • Use getchar() and putchar() to input and output single characters.

 • Use a standalone getchar() to get rid of the Enter keypress if you don’t 
want to capture it. You also can create a loop to call getchar() until the 
return value is \n, as shown in the sample code.

 • Use getch() to get unbuffered single characters as soon as the user types 
them.

 • Don’t use a character I/O function with character variables. Use an int 
variable instead.

 • Don’t forget to print character input using putch() if you want that input 
echoed on the screen as the user types.

19_9780789751980_ch18.indd   170 7/17/13   12:27 PM



GETTING MORE FROM 
YOUR STRINGS
This chapter shows you ways to take work off your shoulders and put it 

on C’s. C includes many helpful built-in functions in addition to ones such 

as strlen(), getchar(), and printf() that you’ve read about so far.

Many more built-in functions exist than there is room for in a single chap-

ter. This chapter explains the most common and helpful character and 

string functions. In the next chapter, you’ll learn about some numeric 

functions.

I N  T H I S  C H A P T E R

19
• Employing character-testing functions

• Checking whether the case is correct

• Adding case-changing functions

• Using string functions

20_9780789751980_ch19.indd   171 7/17/13   12:27 PM



172 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Character-Testing Functions
C has several built-in character-testing functions. Now that you know how to use 
getchar() and getch() to get single characters, the character-testing func-
tions can help you determine exactly what kind of input characters your program 
receives. You can set up if logic to execute certain courses of action based on 
the results of the character tests.

TIP You must include the ctype.h header file at the top of 
any program that uses the character functions described in this 
chapter.

The isalpha() function returns true (which is 1 to C) if the value in its paren-
theses is an alphabetic character a through z (or the uppercase A through Z) and 
returns false (which is 0 to C) if the value in parentheses is any other character. 
Consider this if:
if (isalpha(inChar))

{

      printf("Your input was a letter.\n");

}

The message prints only if inChar contains an alphabetic letter.

C has a corresponding function named isdigit() that returns true if the char-
acter in the parentheses is a number from 0 through 9. The following if prints 
A number if inChar contains a digit:
if (isdigit(inChar))

{

      printf("A number\n");

}

NOTE Do you see why these are called character-testing 
functions? Both isalpha() and isdigit() test character con-
tent and return the relational result of the test.

Is the Case Correct?
The isupper() and islower() functions let you know whether a variable con-
tains an upper- or lowercase value. Using isupper() keeps you from having to 
write long if statements like this:

20_9780789751980_ch19.indd   172 7/17/13   12:27 PM



CHAPTER 19  GETTING MORE FROM YOUR STRINGS 173

if ((inLetter >= 'A') && (inLetter <= 'Z'))

{

      printf("Letter is uppercase\n");

}

Instead, use isupper() in place of the logical comparison:
if (isupper(inLetter))

{

printf("Letter is uppercase\n");

}

NOTE islower() tests for lowercase values in the same way 
as isupper() tests for uppercase values.

You might want to use isupper() to ensure that your user enters an initial-
uppercase letter when entering names.

Here’s a quick little program that gets a username and password and then uses 
the functions described in this chapter to check whether the password has an 
uppercase letter, a lowercase letter, and a number in it. If a user has all three, the 
program congratulates him or her for selecting a password with enough variety to 
make it harder to crack. If the password entered does not have all three catego-
ries, the program suggests that the user consider a stronger password.
// Example program #1 from Chapter 19 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter19ex1.c

/* This program asks a user for a username and a password. It tests 

whether their password has an uppercase letter, lowercase letter, 

and a digit. If it does, the program congratulates their selection. 

If not, it suggests they might want to consider a password with more 

variety for the sake of security. */

// stdio.h is needed for printf() and scanf()

// string.h is needed for strlen()

// ctype.h is needed for isdigit, isupper, and islower

#include <stdio.h>

#include <string.h>

20_9780789751980_ch19.indd   173 7/17/13   12:27 PM



174 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

#include <ctype.h>

main()

{

       int i;

       int hasUpper, hasLower, hasDigit;

       char user[25], password[25];

    // Initialize all three test variables to 0 i.e. false

       hasUpper = hasLower = hasDigit = 0;

       printf("What is your username? ");

       scanf(" %s", user);

       printf("Please create a password: ");

       scanf(" %s", password);

       // This loop goes through each character of the password and 

       // tests

       // whether it is a digit, upppercase letter, then lowercase 

       // letter.

       for (i = 0; i < strlen(password) ; i++ )

       {

          if (isdigit(password[i]))

          {

              hasDigit = 1;

              continue;

          }

          if (isupper(password[i]))

          {

              hasUpper = 1;

              continue;

          }

          if (islower(password[i]))

20_9780789751980_ch19.indd   174 7/17/13   12:27 PM



CHAPTER 19  GETTING MORE FROM YOUR STRINGS 175

          {

              hasLower = 1;

          }

      }

       /* The if portion will only execute if all three variables 

below are 1, and the variables will only equal 1 if the appropriate 

characters were each found */

 if ((hasDigit) && (hasUpper) && (hasLower))

            {

            printf("\n\nExcellent work, %s,\n", user);

            printf("Your password has upper and lowercase ");

            printf("letters and a number.");

 } else

 {

            printf("\n\nYou should consider a new password, %s,\n", 

              user);

            printf("One that uses upper and lowercase letters ");

            printf("and a number.");

        }

       return(0);

}

Anyone creating a password these days gets a lecture about the need for a variety 
of letters, numbers, and, in some cases, characters in their password to make it 
difficult for hackers to crack their code. This program uses the functions listed in 
this chapter to check that a password has each of the three types of characters in 
an entered password by looping through the password character by character and 
testing each of the three types. If a specific character is one of those three types, a 
variable flag is set to 1 (TRUE in C parlance), and then the loop moves on.

In the case of the first two tests, after the variable flag (hasDigit or hasUpper) is 
set to 1, a continue statement starts the next version of the loop—after the char-
acter has been determined to be a digit, there is no need to run the next two tests 
(after all, it can’t be more than one category, right?), so for efficiency’s sake, skip-
ping the subsequent tests makes sense. The last if code section does not need a 
continue statement because it is already at the end of the loop.

20_9780789751980_ch19.indd   175 7/18/13   8:35 AM



176 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

After all the characters in the password string have been tested, an if statement 
checks whether all three conditions were met. If so, it prints a congratulatory mes-
sage. If not, it prints a different message.

TIP Some passwords today also ask for at least one non-letter, 
non-number character (such as $, !, *, &, and so on). You could 
further refine this code to check for those by putting an else at 
the end of the final islower test. After all, if a character fails the 
first three tests, then it fits in this last category.

Case-Changing Functions
C has two important character-changing functions (also called character-mapping 
functions) that return their arguments changed a bit. Unlike isupper() and 
islower(), which only test character values and return a true or false result 
of the test, toupper() and tolower() return their arguments converted to 
a different case. toupper() returns its parentheses argument as uppercase. 
tolower() returns its parentheses argument as lowercase.

The following program segment prints yes or no, depending on the user’s input. 
Without the toupper()function, you need an extra test to execute your plan:
if ((userInput == 'Y') || (userInput == 'y'))

       { printf("yes\n"); }

else

       { printf("no\n"); }

The next set of statements uses the toupper() function to streamline the if 
statement’s logical test for lowercase letters:
if (toupper(userInput) == 'Y') // only need to test for upper case

       { printf("yes\n"); }

else

       { printf("no\n"); }

String Functions
The string.h header file contains descriptions for more functions than just 
strcpy() and strlen(). This section explains the strcat() function that lets 
you merge two character arrays, as long as the arrays hold strings. strcat() 
stands for string concatenation.

20_9780789751980_ch19.indd   176 7/17/13   12:27 PM



CHAPTER 19  GETTING MORE FROM YOUR STRINGS 177

strcat() takes one string and appends it to—that is, adds it onto the end of—
another string. This code fragment shows what happens with strcat():
char first[25] = "Katniss";

char last[25] = " Everdeen";

strcat(first, last); //Adds last to the end of first

printf("I am $s\n", first);

Here is the output of this code:

I am Katniss Everdeen

strcat() requires two string arguments. strcat() tacks the second string onto 
the end of the first one. The space appears before the last name only because the 
last array is initialized with a space before the last name in the second line.

WARNING You are responsible for making sure that the 
first array is large enough to hold both strings. If you attempt to 
concatenate a second string to the end of another string, and the 
second string is not defined with enough characters to hold the 
two strings, strange and unpredictable results can happen.

Because the second argument for strcat() is not changed, you can use a string 
literal in place of a character array for the second argument, if you like.

The puts() and gets() functions provide an easy way to print and get strings. 
Their descriptions are in stdio.h, so you don’t have to add another header file 
for puts() and gets(). puts() sends a string to the screen, and gets() gets 
a string from the keyboard. The following program demonstrates gets() and 
puts(). As you look through it, notice that neither printf() nor scanf() is 
required to input and print strings.
// Example program #2 from Chapter 19 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter19ex2.c

/* This program asks a user for their hometown and the two-letter 

abbreviation of their home state. It then uses string concatenation 

to build a new string with both town and state and prints it using 

puts. */

// stdio.h is needed for puts() and gets()

// string.h is needed for strcat()

20_9780789751980_ch19.indd   177 7/17/13   12:27 PM



178 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

#include <stdio.h>

main()

{

       char city[15];

       // 2 chars for the state abbrev. and one for the null zero

       char st[3];

       char fullLocation[18] = "";

       puts("What town do you live in? ");

       gets(city);

       puts("What state do you live in? (2-letter abbreviation)");

       gets(st);

       /* Concatenates the strings */

       strcat(fullLocation, city);

       strcat(fullLocation, ", "); //Adds a comma and space between 

                                   // the city

       strcat(fullLocation, st); //and the state abbreviation

       puts("\nYou live in ");

       puts(fullLocation);

       return(0);

}

TIP strcat() has to be used three times: once to add the 
city, once for the comma, and once to tack the state onto the end 
of the city.

20_9780789751980_ch19.indd   178 7/17/13   12:27 PM



CHAPTER 19  GETTING MORE FROM YOUR STRINGS 179

Here is the output from a sample run of this program:
What town do you live in?

Gas City

What state do you live in? (2-letter abbreviation)

IN

You live in

Gas City, IN

puts() automatically puts a newline at the end of every string it prints. You don’t 
have to add a \n at the end of an output string unless you want an extra blank 
line printed.

TIP gets() converts the Enter keypress to a null zero to 
ensure that the data obtained from the keyboard winds up being 
a null-terminated string instead of an array of single characters.

One of the most important reasons to use gets() over scanf() is that you can 
ask the user for strings that contain embedded spaces, such as a full name (first 
and last name). scanf() cannot accept strings with spaces; scanf() stops get-
ting user input at the first space. Using the name of the city from the code exam-
ple, Gas City, with a scanf() statement would have caused data-entry issues. 
This is the value of gets(). So if you went back to the favorite movie program 
in Chapter 15, “Looking for Another Way to Create Loops,” and replaced the 
scanf() statement with gets(), you could allow the user to type in titles with 
more than one word.

20_9780789751980_ch19.indd   179 7/17/13   12:27 PM



180 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you some built-in character and string func-
tions that help you test and change strings. The string functions presented in this 
chapter work on both string literals and arrays. The character functions test for dig-
its and letters, and convert uppercase and lowercase characters to their opposites. 
Key concepts from this chapter include:

 • Use C’s built-in character-testing and character-mapping functions so your 
programs don’t have to work as hard to determine the case of character data.

 • Use gets() to get strings and puts() to print strings.

 • Use gets() when you must get strings that might contain spaces. Remember 
that scanf() cannot grab strings with spaces.

 • Use strcat() to merge two strings.

 • Don’t concatenate two strings with strcat() unless you’re positive that the 
first character array can hold the strings after they’re merged.

 • Don’t put a newline inside the puts() string unless you want an extra line 
printed. puts() automatically adds a newline to the end of strings.

20_9780789751980_ch19.indd   180 7/17/13   12:27 PM



ADVANCED MATH 
(FOR THE COMPUTER, 
NOT YOU!)
This chapter extends your knowledge of built-in functions to the numeric 

functions. C helps you do math that the C operators can’t do alone. More 

than anything else, the C built-in numeric functions supply routines that 

you don’t have to write yourself.

A lot of C’s built-in math functions are highly technical—not that their 

uses are difficult, but their purposes might be. Unless you need trigono-

metric and advanced math functions, you might not find a use for many 

of the functions described in this chapter.

I N  T H I S  C H A P T E R

20
• Practicing your math

• Doing more conversions

• Getting into trig and other really hard stuff

• Getting random

21_9780789751980_ch20.indd   181 7/17/13   12:27 PM



182 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP Some people program in C for years and never need many 
of these functions. You should read this chapter’s material to get 
an idea of what C can accomplish so you’ll know what’s available 
if you ever do need these powerful functions.

Practicing Your Math
All the functions this chapter describes require the use of the math.h header file. 
Be sure to include math.h along with stdio.h if you use a math function. The 
first few math functions are not so much math functions as they are numeric func-
tions. These functions convert numbers to and from other numbers.

The floor() and ceil() functions are called the floor and ceiling functions, 
respectively. They “push down” and “push up” nonintegers to their next-lower or 
next-higher integer values. For example, if you wanted to compute how many dol-
lar bills were in a certain amount of change (that includes dollars and cents), you 
could use floor() on the amount. The following code does just that:
change = amtPaid – cost; //These are all floating-point values

dollars = floor(change);

printf("The change includes %f dollar bills.\n", dollars);

WARNING Although ceil() and floor() convert their 
arguments to integers, each function returns a float value. 
That’s why the dollars variable was printed using the %f con-
version code.

The ceil() function (which is the opposite of floor()) finds the next-highest 
integer. Both ceil() and floor() work with negative values, too, as the follow-
ing few lines show:
lowVal1 = floor(18.5);  // Stores 18.0

lowVal2 = floor(-18.5);  // Stores -19.0

hiVal1 = ceil(18.5); // Stores 19.0

hiVal2 = ceil(-18.5); // Stores =18.0

NOTE The negative values make sense when you think about 
the direction of negative numbers. The next integer down from 
–18.5 is –19. The next integer up from –18.5 is –18.

See, these functions aren’t so bad, and they come in handy when you need them.

21_9780789751980_ch20.indd   182 7/17/13   12:27 PM



CHAPTER 20  ADVANCED MATH (FOR THE COMPUTER, NOT YOU!)  183

Doing More Conversions
Two other numeric functions convert numbers to other values. The fabs() func-
tion returns the floating-point absolute value. When you first hear about absolute 
value, it sounds like something you’ll never need. The absolute value of a number, 
whether it is negative or positive, is the positive version of the number. Both of 
these printf() functions print 25:
printf("Absolute value of 25.0 is %.0f.\n", fabs(25.0));

printf("Absolute value of -25.0 is %.0f.\n", fabs(-25.0));

NOTE The floating-point answers print without decimal 
places because of the .0 inside the %f conversion codes.

Absolute values are useful for computing differences in ages, weights, and dis-
tances. For example, the difference between two people’s ages is always a posi-
tive number, no matter how you subtract one from the other.

Two additional mathematical functions might come in handy, even if you don’t do 
heavy scientific and math programming. The pow() function raises a value to a 
power, and the sqrt() function returns the square root of a value.

TIP You can’t compute the square root of a negative number. 
The fabs() function can help ensure that you don’t try to do so 
by converting the number to a positive value before you compute 
the square root.

Perhaps a picture will bring back fond high school algebra memories. Figure 20.1 
shows the familiar math symbols used for pow() and sqrt().

x = pow(4, 6); x = 4

x = sqrt(value);

If a C programmer does this: A mathematician does this:

6 � 6 � 6 � 6 � 6 � 6

x =  value

FIGURE 20.1

Looking at the math symbols for pow() and sqrt().

The following code prints the value of 10 raised to the third power and the square 
root of 64:
printf("10 raised to the third power is %.0f.\n", pow(10.0, 3.0));

printf("The square root of 64 is %.0f.\n", sqrt(64));

21_9780789751980_ch20.indd   183 7/17/13   12:27 PM



184 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Here is the output of these printf() functions:
10 raised to the 3rd power is 1000.

The square root of 64 is 8.

Getting into Trig and Other Really Hard Stuff
Only a handful of readers will need the trigonometric and logarithmic functions. If 
you know you won’t, or if you hope you won’t, go ahead and skip to the next sec-
tion. Those of you who need them now won’t require much explanation, so not 
much is given.

Table 20.1 explains the primary trigonometric functions. They each require an 
argument expressed in radians.

TABLE 20.1 C Trigonometric Functions

Function Description

cos(x) Returns the cosine of the angle x

sin(x) Returns the sine of the angle x

tan(x) Returns the tangent of the angle x

acos(x) Returns the arc cosine of the angle x

asin(x) Returns the arc sine of the angle x

atan(x) Returns the arc tangent of the angle x

Again, it’s unlikely you will need these functions, unless you want to relearn trigo-
nometry (or have a child or relative taking the class and want to check their home-
work), but it’s good to know the capabilities of your programming language.

TIP If you want to supply an argument in degrees instead of 
radians, you can convert from degrees to radians with this for-
mula:

radians = degrees * (3.14159 / 180.0);

Table 20.2 shows the primary log functions.

21_9780789751980_ch20.indd   184 7/17/13   12:27 PM



CHAPTER 20  ADVANCED MATH (FOR THE COMPUTER, NOT YOU!)  185

TABLE 20.2 C Logarithmic Functions

Function Description

exp(x)  Returns e, the base of the natural logarithm, raised to a power specified 
by x (e^x).

log(x)  Returns the natural logarithm of the argument x, mathematically written 
as ln(x). x must be positive.

log
10
(x)  Returns the Base10 logarithm of the argument x, mathematically written 

as log10(x). x must be positive.

The following program uses the math functions described in this chapter:
// Example program #1 from Chapter 20 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter20ex1.c

/* This program demonstrates the math functions from the C math.h 

library, so that you can get your homework right thanks to some 

quick-and-easy programming. */

#include <stdio.h>

#include <string.h>

#include <math.h>

main()

{

    printf("It's time to do your math homework!\n");

    printf("Section 1: Square Roots\n");

    printf("The square root of 49.0 is %.1f\n", sqrt(49.0));

    printf("The square root of 149.0 is %.1f\n", sqrt (149.0));

    printf("The square root of .149 is %.2f\n", sqrt (.149));

    printf("\n\nSection 2: Powers\n");

    printf("4 raised to the 3rd power is %.1f\n", pow(4.0, 3.0));

    printf("7 raised to the 5th power is %.1f\n", pow(7.0, 5.0));

21_9780789751980_ch20.indd   185 7/17/13   12:27 PM



186 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    printf("34 raised to the 1/2 power is %.1f\n", pow(34.0, .5));

    printf("\n\nSection 3: Trigonometry\n");

    printf("The cosine of a 60-degree angle is %.3f\n", 

           cos((60*(3.14159/180.0))));

    printf("The sine of a 90-degree angle is %.3f\n", 

           sin((90*(3.14159/180.0))));

    printf("The tangent of a 75-degree angle is %.3f\n", 

           tan((75*(3.14159/180.0))));

    printf("The arc cosine of a 45-degree angle is %.3f\n", 

           acos((45*(3.14159/180.0))));

    printf("The arc sine of a 30-degree angle is %.3f\n", 

           asin((30*(3.14159/180.0))));

    printf("The arc tangent of a 15-degree angle is %.3f\n", 

           atan((15*(3.14159/180.0))));

    printf("\nSection 4: Log functions\n");

    printf("e raised to 2 is %.3f\n", exp(2));

    printf("The natural log of 5 is %.3f\n", log(5));

    printf("The base-10 log of 5 is %.3f\n", log10(5));

    return(0);

}

Here is the output. Does C compute these values faster than you can with pencil 
and paper?
It's time to do your math homework!

Section 1: Square Roots

The square root of 49.0 is 7.0

The square root of 149.0 is 12.2

The square root of .149 is 0.39

Section 2: Powers

4 raised to the 3rd power is 64.0

7 raised to the 5th power is 16807.0

34 raised to the 1/2 power is 5.8

21_9780789751980_ch20.indd   186 7/17/13   12:27 PM



CHAPTER 20  ADVANCED MATH (FOR THE COMPUTER, NOT YOU!)  187

Section 3: Trigonometry

The cosine of a 60-degree angle is 0.500

The sine of a 90-degree angle is 1.000

The tangent of a 75-degree angle is 3.732

The arc cosine of a 45-degree angle is 0.667

The arc sine of a 30-degree angle is 0.551

The arc tangent of a 15-degree angle is 0.256

Section 4: Log functions

e raised to 2 is 7.389

The natural log of 5 is 1.609

The base-10 log of 5 is 0.699

Getting Random
For games and simulation programs, you often need to generate random values. C’s 
built-in rand() function does just that. It returns a random number from 0 to 32767. 
The rand() function requires the stdlib.h (standard library) header file. If you 
want to narrow the random numbers, you can use % (the modulus operator) to do so. 
The following expression puts a random number from 1 to 6 in the variable dice:

dice = (rand() % 5) + 1;  /* From 1 to 6 */

NOTE Because a die can have a value from 1 to 6, the modu-
lus operator returns the integer division remainder (0 through 5), 
and then a 1 is added to produce a die value.

You must do one crazy thing if you want a truly random value.

To seed the random number generator means to give it an initial base value from 
which the rand() function can offset with a random number. Use srand() to 
seed the random number generator. The number inside the srand() parentheses 
must be different every time you run the program, unless you want to produce the 
same set of random values.

The trick to giving srand() a different number each run is to put the exact time 
of day inside the srand() parentheses. Your computer keeps track of the time of 
day, down to hundredths of a second. So first declare a time variable, using the 
time_t declaration, and then send its address (using the & character at the front 
of the variable name) to the srand() function.

21_9780789751980_ch20.indd   187 7/17/13   12:27 PM



188 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE You might always want a different set of random num-
bers produced each time a program runs. Games need such ran-
domness. However, many simulations and scientific studies need to 
repeat the same set of random numbers. rand() will always do that 
if you don’t seed the random number generator.

You must include time.h before seeding the random number generator with the 
time of day, as done here.

The bottom line is this: If you add the two weird-looking time statements, rand() will 
always be random and will produce different results every time you run a program.

As always, the best way to understand these types of functions is to see an exam-
ple. The following code uses the rand() function to roll two dice and present the 
result. Then the user gets to decide whether a second roll of the dice is going to be 
higher, lower, or the same as the previous roll:
// Example program #2 from Chapter 20 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter19ex2.c

/* This program rolls two dice and presents the total. It then asks 

the user to guess if the next total will be higher, lower, or equal. 

It then rolls two more dice and tells the user how they did. */

#include <stdio.h>

#include <string.h>

#include <time.h>

#include <ctype.h>

main()

{

       int dice1, dice2;

       int total1, total2;

       time_t t;

       char ans;

       // Remember that this is needed to make sure each random number

       // generated is different

21_9780789751980_ch20.indd   188 7/17/13   12:27 PM



CHAPTER 20  ADVANCED MATH (FOR THE COMPUTER, NOT YOU!)  189

       srand(time(&t));

       // This would give you a number between 0 and 5, so the + 1

       // makes it 1 to 6

       dice1 = (rand() % 5) + 1;

       dice2 = (rand() % 5) + 1;

       total1 = dice1 + dice2;

       printf("First roll of the dice was %d and %d, ", dice1, dice2);

       printf("for a total of %d.\n\n\n", total1);

       do {

          puts("Do you think the next roll will be ");

          puts("(H)igher, (L)ower, or (S)ame?\n");

          puts("Enter H, L, or S to reflect your guess.");

          scanf(" %c", &ans);

          ans = toupper(ans);

          } while ((ans != 'H') && (ans != 'L') && (ans != 'S'));

       // Roll the dice a second time to get your second total

       dice1 = (rand() % 5) + 1;

       dice2 = (rand() % 5) + 1;

       total2 = dice1 + dice2;

       // Display the second total for the user

       printf("\nThe second roll was %d and %d, ", dice1, dice2);

       printf("for a total of %d.\n\n", total2);

       // Now compare the two dice totals against the user's guess

       // and tell them if they were right or not.

       if (ans == 'L')

21_9780789751980_ch20.indd   189 7/17/13   12:27 PM



190 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

       {

            if (total2 < total1)

            {

                printf("Good job! You were right!\n");

                printf("%d is lower than %d\n", total2, total1);

            }

            else

            {

                printf("Sorry! %d is not lower than %d\n\n", total2, 

                       total1);

            }

        }

    else if (ans == 'H')

        {

            if (total2 > total1)

            {

                printf("Good job! You were right!\n");

                printf("%d is higher than %d\n", total2, total1);

            }

            else

            {

                printf("Sorry! %d is not higher than %d\n\n", total2, 

                       total1);

            }

        }

    else if (ans == 'S')

        {

            if (total2 == total1)

            {

                printf("Good job! You were right!\n");

                printf("%d is the same as %d\n\n", total2, total1);

            }

            else

            {

                printf("Sorry! %d is not the same as %d\n\n", 

                       total2, total1);

21_9780789751980_ch20.indd   190 7/17/13   12:27 PM



CHAPTER 20  ADVANCED MATH (FOR THE COMPUTER, NOT YOU!)  191

            }

        }

    return(0);

}

Not bad—you’re not even two-thirds of the way through the book, and you can call 
yourself a game programmer! The program is a simple guessing game for users to 
predict how a second roll will total when compared to the original roll. The program 
gives the users one chance and then terminates after comparing the results and 
telling the user how successful that guess was. However, a simple do-while loop 
encompassing the entire program could change this so that users could keep play-
ing as long as they want until they choose to quit. Why not try adding that loop?

THE ABSOLUTE MINIMUM
The goal of this chapter was to explain built-in math functions that can make numeric 
data processing easier. C contains a rich assortment of integer functions, numeric con-
version functions, time and date functions, and random number–generating functions.

You don’t have to understand every function in this chapter at this time. You 
might write hundreds of C programs and never use many of these functions. 
Nevertheless, they are in C if you need them.

 • Use the built-in numeric functions when you can so that you don’t have to 
write code to perform the same calculations.

 • Many of the numeric functions, such as floor(), ceil(), and fabs(), 
convert one number to another.

 • Be sure to seed the random number generator with the time of day if you want 
random numbers with rand() to be different every time you run a program.

 • Don’t feel that you must master the trig and log functions if you don’t need 
them now. Many C programmers never use them.

 • Don’t use an integer variable to hold the return value from this chapter’s math 
functions (unless you typecast the function return values); they return float or 
double values even though some, like ceil(), produce whole-number results.

21_9780789751980_ch20.indd   191 7/17/13   12:27 PM



This page intentionally left blank 



DEALING WITH ARRAYS
The really nice thing about this chapter is that it covers absolutely noth-

ing new. You’ve already worked with arrays throughout the book when 

storing strings in character arrays. This chapter simply hones that concept 

of arrays and demonstrates that you can create an array of any data type, 

not just the char data type.

As you know, an array of characters is just a list of characters that has a 

name. Similarly, an array of integers is just a list of integers that has a 

name, and an array of floating-point values is just a list of floating-point 

values that has a name. Instead of referring to each of the array elements 

by a different name, you refer to them by the array name and distinguish 

them with a subscript enclosed in brackets.

I N  T H I S  C H A P T E R

21
• Reviewing arrays

• Putting values in arrays

22_9780789751980_ch21.indd   193 7/17/13   12:27 PM



194 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Reviewing Arrays
All arrays contain values called elements. An array can contain only elements that 
are of the same type. In other words, you can’t have an array that has a floating-
point value, a character value, and an integer value.

You define arrays almost the same way you define regular non-array variables. To 
define a regular variable, you only have to specify its data type next to the vari-
able name:

int i;    /* Defines a non-array variable */

To define an array, you must add brackets ([]) after the name and specify the 
maximum number of elements you will ever store in the array:

int i[25];  /* Defines the array */

If you want to initialize a character array with an initial string, you know that you 
can do this:

char name[6] = "Italy";  /* Leave room for the null! */

WARNING After you define an array to a certain size, don’t 
try to store more elements than were allowed in the original size. 
After defining name as just done, the strcpy() function lets you 
store a string longer than Italy in name, but the result would be 
disastrous because other data in memory could be overwritten 
unintentionally. If another variable happened to be defined imme-
diately after name, that other variable’s data will be overwritten if 
you try to store a too-long string in name.

If the initial array needs to be larger than the initial value you assign, specify a 
larger array size when you define the array, like this:

char name[80] = "Italy";  /* Leaves lots of�extra room */

Doing this makes room for a string much longer than Italy if you want to store a 
longer string in name. For example, you might want to use gets() to get a string 
from the user that could easily be longer than Italy.

Make your arrays big enough to hold enough values, but don’t overdo it. Don’t 
make your arrays larger than you think you’ll really need. Arrays can consume a 
large amount of memory, and the more elements you reserve, the less memory 
you have for your program and other variables.

22_9780789751980_ch21.indd   194 7/17/13   12:27 PM



CHAPTER 21  DEALING WITH ARRAYS 195

You can initialize an array one element at a time when you define an array by 
enclosing the array’s data elements in braces and following the array name with 
an equals sign. For example, the following statement both defines an integer array 
and initializes it with five values:

int vals[5] = {10, 40, 70, 90, 120};

As a review, Figure 21.1 shows what vals looks like in memory after the defini-
tion. The numbers in brackets indicate subscripts. No null zero is at the end of the 
array because null zeroes terminate only strings stored in character arrays.

10

40

70

90

120

vals[0]

vals[1]

vals[2]

vals[3]

vals[4]

The vals array

FIGURE 21.1

After defining and initializing the vals array.

NOTE The first subscript of all C arrays begins at 0.

The following statement defines and initializes two arrays, a floating-point array 
and a double floating-point array. Because C is free-form, you can continue the 
initialization list over more than one line, as is done for annualSal.
float money[10] = {6.23, 2.45, 8.01, 2.97, 6.41};

double annualSal[6] = {43565.78, 75674.23, 90001.34,

                      10923.45, 39845.82};

You also can define and initialize a character array with individual characters:

char grades[5] = {'A', 'B', 'C', 'D', 'F'};

Because a null zero is not in the last character element, grades consists of indi-
vidual characters, but not a string. If the last elements were initialized with '\0', 
which represents the null zero, you could have treated grades as a string and 
printed it with puts(), or printf() and the %s conversion code. The following 
name definition puts a string in name:

22_9780789751980_ch21.indd   195 7/17/13   12:27 PM



196 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

char italCity[7] = {'V', 'e', 'r', 'o', 'n', 'a', '\0'};

You have to admit that initializing such a character array with a string is easier to 
do like this:

char italCity[7] = "Verona";   /* Automatic null zero */

We should be getting back to numeric arrays, which are the primary focus of this 
chapter. Is there a null zero at the end of the following array named nums?

int nums[4] = {5, 1, 3, 0};

There is not a null zero at the end of nums! Be careful—nums is not a character 
array, and a string is not being stored there. The zero at the end of the array is 
a regular numeric zero. The bit pattern (that’s fancy computer lingo for the inter-
nal representation of data) is exactly like that of a null zero. But you would never 
treat nums as if there were a string in nums because nums is defined as an integer 
numeric array.

WARNING Always specify the number of subscripts when 
you define an array. This rule has one exception, however: If you 
assign an initial value or set of values to the array at the time you 
define the array, you can leave the brackets empty:

int ages[5] = {5, 27, 65, 40, 92};   // Correct

int ages[];  // Incorrect

int ages[] = {5, 27, 65, 40, 92};   // Correct

NOTE sizeof() returns the number of bytes you reserved 
for  the array, not the number of elements in which you have 
stored a value. For example, if floating-point values consume 4 
bytes on your computer, an 8-element floating-point array will 
take a total of 32 bytes of memory, and 32 is the value returned if 
you apply sizeof() to the array after you define the array.

If you want to zero out every element of an array, you can do so with a shortcut 
that C provides:

float amount[100] = {0.0};  /* Zeroes-out all of the array */

22_9780789751980_ch21.indd   196 7/17/13   12:27 PM



CHAPTER 21  DEALING WITH ARRAYS 197

If you don’t initialize an array, C won’t either. Until you put values into an array, 
you have no idea exactly what’s in the array. The only exception to this rule is that 
most C compilers zero out all elements of an array if you initialize at least one of 
the array’s values when you define the array. The previous clue works because one 
value was stored in amount’s first element’s position and C filled in the rest with 
zeroes. (Even if the first elements were initialized with 123.45, C would have filled 
the remaining elements with zeroes.)

Putting Values in Arrays
You don’t always know the contents of an array at the time you define it. Often 
array values come from a disk file, calculations, or a user’s input. Character arrays 
are easy to fill with strings because C supplies the strcpy() function. You can 
fill other types of arrays a single element at a time. No shortcut function, such as 
strcpy(), exists to put a lot of integers or floating-point values in an array.

The following code defines an array of integers and asks the user for values that 
are stored in that array. Unlike regular variables that all have different names, array 
elements are easy to work with because you can use a loop to count the sub-
scripts, as done here:
int ages[3];

for (i = 0; i < 3; i++)

{

       printf("What is the age of child #%d? ", i+1);

       scanf(" %d", &ages[i]); // Gets next age from user

}

Now let’s use a simple program that combines both methods of entering data in 
an array. This program keeps track of how many points a player scored in each 
of 10 basketball games. The first six scores are entered when the array is initial-
ized, and then the user is asked for the player’s scores for games 7–10. After all 
the data is entered, the program loops through the 10 scores to compute average 
points per game:
// Example program #1 from Chapter 21 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter21ex1.c

/* This program creates an array of 10 game scores for a basketball 

player.

22_9780789751980_ch21.indd   197 7/17/13   12:27 PM



198 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    The scores from the first six games are in the program and the   

    scores From the last four are inputted by the user. */

#include <stdio.h>

main()

{

    int gameScores[10] = {12, 5, 21, 15, 32, 10};

    int totalPoints = 0;

    int i;

    float avg;

    // Only need scores for last 4 games so the loop will cover

    // array elements 6-9

    for (i=6; i < 10; i++)

    {

        // Add one to the array number as the user won't think

        // of the first game as game 0, but game 1

        printf("What did the player score in game %d? ", i+1);

        scanf(" %d", &gameScores[i]);

    }

    // Now that you have all 10 scores, loop through the scores

    // to get total points in order to calculate an average.

    for (i=0; i<10; i++)

    {

        totalPoints += gameScores[i];

    }

    // Use a floating-point variable for the average as it is

    // likely to be between two integers

22_9780789751980_ch21.indd   198 7/17/13   12:27 PM



CHAPTER 21  DEALING WITH ARRAYS 199

    avg = ((float)totalPoints/10);

    printf("\n\nThe Player's scoring average is %.1f.\n", avg);

    return(0);

}

A sample run through the program follows:
What did the player score in game 7? 21

What did the player score in game 8? 8

What did the player score in game 9? 11

What did the player score in game 10? 14

The Player's scoring average is 14.9

So this program is designed to show you two different ways you can add values 
to a variable array. It’s a bit impersonal, so if you wanted, you could add a string 
array for the player’s name at the beginning of the program; then the prompts for 
the individual game scores and the final average could incorporate that name. In 
the next two chapters, you learn how to search an array, as well as sort the data in 
the array, in case you want to list the player’s scoring from best to worst.

WARNING Don’t make the same mistake we made. The 
first time we ran the program, we got a scoring average of 42,000 
per game (which we are fairly certain would be a record for an 
individual player). Why did this happen? When we defined the 
variable totalPoints, we did not set it to 0 initially, and as 
we’ve reminded you throughout the book (but did not apply to 
our own program), you cannot assume that, just because you 
define a variable, it is initially empty or 0.

22_9780789751980_ch21.indd   199 7/17/13   12:27 PM



200 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The goal of this chapter was to teach you how to store data in lists called arrays. 
An array is nothing more than a bunch of variables. Each variable has the same 
name (the array name). You distinguish among the variables in the array (the array 
elements) with a numeric subscript. The first array element has a subscript of 0, 
and the rest count up from there.

Arrays are characterized by brackets that follow the array names. The array sub-
scripts go inside the brackets when you need to refer to an individual array ele-
ment. Key concepts from this chapter include:

 • Use arrays to hold lists of values of the same data type.

 • Refer to the individual elements of an array with a subscript.

 • Write for loops if you want to “step through” every array element, whether it 
be to initialize, print, or change the array elements.

 • In an array, don’t use more elements than defined subscripts.

 • Don’t use an array until you have initialized it with values.

22_9780789751980_ch21.indd   200 7/17/13   12:27 PM



SEARCHING ARRAYS
You bought this book to learn C as painlessly as possible—and that’s 

what has been happening. (You knew that something was happening, 

right?) Nevertheless, you won’t become an ace programmer if you aren’t 

exposed a bit to searching and sorting values. Complete books have 

been written on searching and sorting techniques, and the next two 

chapters present only the simplest techniques. Be forewarned, however, 

that before you’re done, this chapter and the next one might raise more 

questions than they answer.

You’ll find that this and the next chapter are a little different from a lot of 

the others. Instead of teaching you new C features, these chapters demon-

strate the use of C language elements you’ve been learning throughout this 

book. These chapters focus on arrays. You will see applications of the array 

concepts you learned in Chapter 21, “Dealing with Arrays.” After these 

chapters strengthen your array understanding, Chapter 25, “Arrays and 

Pointers,” explains a C alternative to arrays that sometimes comes in handy.

I N  T H I S  C H A P T E R

22
• Filling arrays

• Searching parallel arrays for specific values

23_9780789751980_ch22.indd   201 7/17/13   12:26 PM



202 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Filling Arrays
As Chapter 21 mentioned, your programs use several means to fill arrays. Some 
arrays, such as the day counts in each of the 12 months, historical temperature 
readings, and last year’s sales records, are known in advance. You might initialize 
arrays with such values when you define the arrays or when you use assignment 
statements.

You will also be filling arrays with values that your program’s users enter. A cus-
tomer order-fulfillment program, for example, gets its data only as customers 
place orders. Likewise, a scientific lab knows test values only after the scientists 
gather their results.

Other data values come from disk files. Customer records, inventory values, and 
school transcript information is just too voluminous for users to enter each time a 
program is run.

In reality, your programs can and will fill arrays using a combination of all three of 
these methods:

 • Assignment

 • User data entry

 • Disk files

This book has to keep the programs simple. Until you learn about disk files, you’ll 
see arrays filled with assignment statements and possibly simple user data entry 
(and you’ll be the user!).

NOTE At this point, it’s important for you to concentrate on 
what you do with arrays after the arrays get filled with values. 
One of the most important things to do is find values that you put 
in the arrays.

Finders, Keepers
Think about the following scenario: Your program contains an array that holds cus-
tomer ID numbers and an array that holds the same number of customer balances. 
Such arrays are often called parallel arrays because the arrays are in synch—that is, 
element number 14 in the customer ID array contains the customer number that 
owes a balance found in element 14 of the balance array.

23_9780789751980_ch22.indd   202 7/17/13   12:26 PM



CHAPTER 22  SEARCHING ARRAYS 203

The customer balance program might fill the two arrays from disk data when the 
program first starts. As a customer places a new order, it’s your program’s job to 
find that customer balance and stop the order if the customer owes more than 
$100 already (the deadbeat!).

In a nutshell, here is the program’s job:

 1. Ask for a customer ID number (the key).

 2. Search the array for a customer balance that matches the key value.

 3. Inform you if the customer already owes more than $100.

The following program does just that. Actually, the program maintains a list of 
only 10 customers because you’re not yet ready to tackle disk input (but you’re 
almost there!). The program initializes the arrays when the arrays are first defined, 
so maintaining only 10 array element pairs (the customer ID and the correspond-
ing balance arrays) keeps the array definitions simple.

Study this program before typing it in and running it. See if you can get the gist of 
the program from the code and comments. Following this code listing is an expla-
nation.
// Example program #1 from Chapter 22 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter22ex1.c

/* This program takes an ID number from the user and then checks the 

ID against a list of customers in the database. If the customer 

exists, it uses that array element to check their current balance, 

and warns the user if the balance is more than 100 */

#include <stdio.h>

main()

{

    int ctr; // Loop counter

    int idSearch; // Customer to look for (the key)

    int found = 0; // Will be 1 (true) if customer is found

    // Defines the 10 elements in the two parallel arrays

23_9780789751980_ch22.indd   203 7/17/13   12:27 PM



204 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    int custID[10] = {313, 453, 502, 101, 892,

                      475, 792, 912, 343, 633};

    float custBal[10] = {0.00, 45.43, 71.23, 301.56, 9.08,

                         192.41, 389.00, 229.67, 18.31, 59.54};

    /* Interact with the user looking for a balance. */

    printf("\n\n*** Customer Balance Lookup ***\n");

    printf("What customer number do you need to check? ");

    scanf(" %d", &idSearch);

    /* Search to see that the customer ID exists in the array */

    for (ctr=0; ctr<10; ctr++)

    {

        if (idSearch == custID[ctr])

        {

            found = 1;

            break;

        }

    }

    if (found)

    {

        if (custBal[ctr] > 100.00)

        {

            printf("\n** That customer's balance is $%.2f.\n",

                   custBal[ctr]);

            printf(" No additional credit.\n");

        }

        else

        {

            printf("\n** The customer's credit is good!\n");

        }

    }

    else

    {

        printf("** You must have typed an incorrect customer ID.");

23_9780789751980_ch22.indd   204 7/17/13   12:27 PM



CHAPTER 22  SEARCHING ARRAYS 205

        printf("\n   ID %3d was not found in list.\n", idSearch);

    }

    return(0);

}

This program’s attempted customer search has three possibilities:

 • The customer’s balance is less than $100.

 • The customer’s balance is too high (more than $100).

 • The customer’s ID is not even in the list.

Here are three runs of the program showing each of the three possibilities:
*** Customer Balance Lookup ***

What customer number do you need to check? 313

** The customer's credit is good!

***Customer Balance Lookup ***

What customer number do you need to check? 891

** You must have typed an incorrect customer ID.

   ID 891 was not found in list.

***Customer Balance Lookup***

What customer number do you need to check? 475

** That customer's balance is $192.41.

No additional credit

The first part of the program defines and initializes two arrays with the customer ID 
numbers and matching balances. As you know, when you first define arrays, you 
can use the assignment operator, =, to assign the array’s data.

After printing a title and asking for a customer ID number, the program uses a for 
loop to step through the parallel arrays looking for the user’s entered customer ID. 
If it discovers the ID, a found variable is set to true (1) for later use. Otherwise, 
found remains false (0).

23_9780789751980_ch22.indd   205 7/17/13   12:27 PM



206 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP The found variable is often called a flag variable because 
it flags (signals) to the rest of the program whether the customer 
ID was or was not found.

The program’s for loop might end without finding the customer. The code fol-
lowing the for loop would have no way of knowing whether the for’s break trig-
gered an early for loop exit (meaning that the customer was found) or whether 
the for ended normally. Therefore, the found variable lets the code following 
the for loop know whether the for found the customer.

When the for loop ends, the customer is found (or not found). If found, the fol-
lowing two conditions are possible:

 • The balance is already too high.

 • The balance is okay for more credit.

No matter which condition is the true condition, the user is informed of the result. 
If the customer was not found, the user is told that and the program ends.

How was that for a real-world program? Too difficult, you say? Look it over once 
or twice more. You’ll see that the program performs the same steps (albeit in 
seemingly more detail) that you would follow if you were scanning a list of custom-
ers by hand.

NOTE What’s really important is that if there were a thou-
sand, or even 10,000 customers, and the arrays were initialized 
from a disk file, the same search code would work! The amount 
of data doesn’t affect the logic of this program (only the way the 
arrays are initialized with data).

Here’s a second program that shows the value of linked arrays. Returning to the 
basketball player from the last chapter, this program has three arrays: one for 
scoring, one for rebounding, and one for assists. The program searches through 
the scoring totals, finds the game in which the player scored the most points, and 
then prints the player’s total in all three categories in that particular game:
// Example program #2 from Chapter 22 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter22ex2.c

/* This program fills three arrays with a player's total points, 

rebounds, and assists It loops through the scoring array and finds 

the game with the most points. Once it knows that information, it 

prints the totals from all three categories from that game */

23_9780789751980_ch22.indd   206 7/17/13   12:27 PM



CHAPTER 22  SEARCHING ARRAYS 207

#include <stdio.h>

main()

{

    int gameScores[10] = {12, 5, 21, 15, 32, 10, 6, 31, 11, 10};

    int gameRebounds[10] = {5, 7, 1, 5, 10, 3, 0, 7, 6, 4};

    int gameAssists[10] = {2, 9, 4, 3, 6, 1, 11, 6, 9, 10};

    int bestGame = 0; //The comparison variable for best scoring 

                      //game

    int gmMark = 0; // This will mark which game is the best scoring 

                    // game

    int i;

    for (i=0; i<10; i++)

    {

        // if loop will compare each game to the current best total

        // if the current score is higher, it becomes the new best

        // and the counter variable becomes the new flag gmMark

       if (gameScores[i] > bestGame)

       {

           bestGame = gameScores[i];

           gmMark = i;

       }

    }

    // Print out the details of the best scoring game

    // Because arrays start at 0, add 1 to the game number

    printf("\n\nThe Player's best scoring game totals:\n");

    printf("The best game was game #%d\n", gmMark+1);

    printf("Scored %d points\n", gameScores[gmMark]);

    printf("Grabbed %d rebounds\n", gameRebounds[gmMark]);

    printf("Dished %d assists\n", gameAssists[gmMark]);

 

    return(0);

}

23_9780789751980_ch22.indd   207 7/17/13   12:27 PM



208 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

TIP If you are keeping track of multiple variables tied to one 
object (such as one player’s different stats from a single game in 
this code example), a structure can help tie things together nicely. 
You learn about structures in Chapter 27, “Setting Up Your Data 
with Structures.”

Both example programs in this chapter use a sequential search because the arrays 
(customer ID and gameScores) are searched from beginning to end until a match 
is found. You’ll learn about more advanced searches as your programming skills 
improve. In the next chapter, you’ll see how sorting an array helps speed some 
array searches. You’ll also check out advanced search techniques called binary 
searches and Fibonacci searches.

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you how to find values in arrays. You saw 
how to find array values based on a key. The key is a value that the user enters. 
You’ll often search through parallel arrays, as done here. One array (the key array) 
holds the values for which you’ll search. If the search is successful, other arrays 
supply needed data and you can report the results to the user. If the search is 
unsuccessful, you need to let the user know that also. Key concepts from this 
chapter include:

 • Filling arrays is only the first step; after they’re filled, your program must 
interact with the data.

 • Until you learn more about searches, use a sequential search because it is the 
easiest search technique to master.

 • Don’t forget that a match might not be found. Always assume that your search 
value might not be in the list of values and include the code needed to handle 
an unfound value.

23_9780789751980_ch22.indd   208 7/17/13   12:27 PM



ALPHABETIZING AND 
ARRANGING YOUR DATA
Sorting is the computer term given to ordering lists of values. Not only 

must you be able to find data in arrays, but you often need to arrange 

array data in a certain order. Computers are perfect for sorting and alpha-

betizing data, and arrays provide the vehicles for holding sorted data.

Your programs don’t always hold array data in the order you want to 

see that data. For example, students don’t enroll based on alphabetical 

last name, even though most colleges print lists of students that way. 

Therefore, after collecting student data, the school’s computer programs 

must somehow arrange that data in last name order for reports.

This chapter explains the easiest of computer sorting techniques, called 

the bubble sort.

I N  T H I S  C H A P T E R

23
• Putting your house in order: sorting

• Conducting faster searches

24_9780789751980_ch23.indd   209 7/17/13   12:26 PM



210 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Putting Your House in Order: Sorting
If you want to alphabetize a list of letters or names, or put a list of sales values into 
ascending order (ascending means from low to high, and descending means from 
high to low), you should use a sorting routine. Of course, the list of values that 
you sort will be stored in an array because array values are so easily rearranged by 
their subscripts.

Think about how you’d put a deck of cards in order if you threw the cards up in 
the air and let them fall. You would pick them up, one by one, looking at how the 
current card fit in with the others in your hand. Often you would rearrange some 
cards that you already held. The same type of process is used for sorting an array; 
often you have to rearrange values that are in the array.

Several computer methods help in sorting values. This chapter teaches you about 
the bubble sort. The bubble sort isn’t extremely efficient compared to other sorts, 
but it’s the easiest to understand. The name bubble sort comes from the nature 
of the sort. During a sort, the lower values “float” up the list each time a pass is 
made through the data. Figure 23.1 shows the process of sorting five numbers 
using a bubble sort.

The next program sorts a list of 10 numbers. The numbers are randomly gener-
ated using rand(). The bubble sort routine is little more than a nested for loop. 
The inner loop walks through the list, swapping any pair of values that is out of 
order down the list. The outer loop causes the inner loop to run several times (one 
time for each item in the list).

An added bonus that is common to many improved bubble sort routines is the 
testing to see whether a swap took place during any iteration of the inner loop. 
If no swap took place, the outer loop finishes early (via a break statement). 
Therefore, if the loop is sorted to begin with, or if only a few passes are needed to 
sort the list, the outer loop doesn’t have to finish all its planned repetitions.

24_9780789751980_ch23.indd   210 7/17/13   12:26 PM



CHAPTER 23  ALPHABETIZING AND ARRANGING YOUR DATA 211

Before sorting:

During first pass, C compares the first value
to the second.  Because 32 is less than 50, they
switch places:

It then compares 32 and 93 and leaves them
where they are.  Next, C compares 32 and 2.  Because
2 is the lesser value, 32 and 2 switch places:

Finally, it compares 2, the new first value in
the list, to 74 and leaves them.

After first pass:

During second pass, C compares the second value, 50,
to 93 and leaves them.  It then compares 50 to 32 and
switches them:

C then compares the second value, 32, to 74 and
leaves them.

After second pass:

This process continues until all the numbers
have been sorted.

After third pass:

After fourth pass:

50
32
93

2
74

32
50
93

2
74

2
50
93
32
74

2
50
93
32
74

2
32
93
50
74

2
32
93
50
74

2
32
50
93
74

2
32
50
74
93 (sorted)

FIGURE 23.1

During each pass, the lower values “float” to the top of the array.

24_9780789751980_ch23.indd   211 7/17/13   12:26 PM



212 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

// Example program #1 from Chapter 23 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter23ex1.c

/* This program generates 10 random numbers and then sorts them */

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

main()

{

    int ctr, inner, outer, didSwap, temp;

    int nums[10];

    time_t t;

    // If you don't include this statement, your program will always

    // generate the same 10 random numbers

    srand(time(&t));

    // The first step is to fill the array with random numbers 

    // (from 1 to 100)

    for (ctr = 0; ctr < 10; ctr++)

    {

        nums[ctr] = (rand() % 99) + 1;

    }

    // Now list the array as it currently is before sorting

    puts("\nHere is the list before the sort:");

    for (ctr = 0; ctr < 10; ctr++)

    {

        printf("%d\n", nums[ctr]);

24_9780789751980_ch23.indd   212 7/17/13   12:26 PM



CHAPTER 23  ALPHABETIZING AND ARRANGING YOUR DATA 213

    }

    // Sort the array

    for (outer = 0; outer < 9; outer++)

    {

        didSwap = 0; //Becomes 1 (true) if list is not yet ordered

        for (inner = outer; inner < 10; inner++)

        {

            if (nums[inner] < nums[outer])

            {

                temp = nums[inner];

                nums[inner] = nums[outer];

                nums[outer] = temp;

                didSwap = 1;

            }

        }

        if (didSwap == 0)

        {

            break;

        }

    }

    // Now list the array as it currently is after sorting

    puts("\nHere is the list after the sort:");

    for (ctr = 0; ctr < 10; ctr++)

    {

        printf("%d\n", nums[ctr]);

    }

    return(0);

}

24_9780789751980_ch23.indd   213 7/17/13   12:26 PM



214 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The output from this sorting program is as follows:
Here is the list before the sort

64

17

1

34

9

5

58

5

6

70

Here is the list after the sort

1

5

5

6

9

17

34

58

64

70

NOTE Your output might be different than that shown in the 
preceding example because rand() produces different results 
between compilers. The important thing to look for is the set 
of 10 random values your program generates, which should be 
sorted upon completion of the program.

Here is the swapping of the variables inside the inner loop:
                temp = nums[inner];

                nums[inner] = nums[outer];

                nums[outer] = temp;

24_9780789751980_ch23.indd   214 7/17/13   12:26 PM



CHAPTER 23  ALPHABETIZING AND ARRANGING YOUR DATA 215

In other words, if a swap needs to take place (the first of the two values being 
compared is higher than the second of the two values), the program must swap 
nums[inner] with nums[outer].

You might wonder why an extra variable, temp, was needed to swap two vari-
ables’ values. A natural (and incorrect) tendency when swapping two variables 
might be this:
nums[inner] = nums[outer];  /* Does NOT swap the */

nums[outer] = nums[inner];  /* two values        */

The first assignment wipes out the value of nums[inner] so that the second 
assignment has nothing to assign. Therefore, a third variable is required to swap 
any two variables.

TIP If you wanted to sort the list in descending order, you 
would only have to change the less-than sign (<) to a greater-than 
sign (>) right before the swapping code.

If you wanted to alphabetize a list of characters, you could do so by testing and 
swapping character array values, just as you’ve done here. In Chapter 25, “Arrays 
and Pointers,” you learn how to store lists of string data that you can sort.

Faster Searches
Sometimes sorting data speeds your data searching. In the last chapter, you saw a 
program that searched a customer ID array for a matching user’s value.

If a match was found, a corresponding customer balance (in another array) was 
used for a credit check. The customer ID values were not stored in any order.

The possibility arose that the user’s entered customer ID might not have been 
found. Perhaps the user entered the customer ID incorrectly, or the customer ID 
was not stored in the array. Every element in the entire customer ID array had to 
be searched before the programmer could realize that the customer ID was not 
going to be found.

However, if the arrays were sorted in customer ID order before the search began, 
the program would not always have to look at each array element before decid-
ing that a match couldn’t be made. If the customer ID array were sorted and the 
user’s customer ID were passed when looking through a search, the program 
would know right then that a match would not be found. Consider the following 
list of unsorted customer IDs:

24_9780789751980_ch23.indd   215 7/17/13   12:26 PM



216 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

313

532

178

902

422

562

Suppose the program had to look for the customer ID 413. With an unsorted 
array, a program would have to match the ID 413 to each element in the array.

If the arrays contained hundreds or thousands of values instead of only six, the 
computer would take longer to realize unmatched searches because each search 
would require that each element be looked at. However, if the values were always 
sorted, a program would not always have to scan through the entire list before 
realizing that a match would not be found. Here is the same list of values sorted 
numerically, from low to high customer IDs:
178

313

422

532

562

902

A sorted list makes the search faster. Now if you search for customer ID 413, 
your program can stop searching after looking at only three array values. 422 is 
the third element, and because 422 is greater than 413, your program can stop 
searching. It can stop searching because 422 comes after 413.

NOTE In extreme cases, searching a sorted array is not nec-
essarily faster than sorting using an unsorted array. For instance, 
if you were searching within the previous list for customer ID 998, 
your program would have to search all six values before realizing 
that 998 was not in the list.

The following program is a combination of the customer ID searching program 
shown in the previous chapter and the sorting routine shown in this chapter. The 
customer ID values are sorted, and then the user is asked for a customer ID to find. 
The program then determines whether the customer’s balance is less than $100. 
However, if the ID is not in the list, the program terminates the search early. Keep in 
mind that having only 10 array values makes this program seem like overkill, but if 
there were tens of thousands of customers, the code would not be different.

24_9780789751980_ch23.indd   216 7/17/13   12:26 PM



CHAPTER 23  ALPHABETIZING AND ARRANGING YOUR DATA 217

// Example program #2 from Chapter 23 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter23ex2.c

/* This program searches a sorted list of customer IDs in order to 

get credit totals */

#include <stdio.h>

main()

{

    int ctr; // Loop counter

    int idSearch; // Customer to look for (the key)

    int found = 0; // 1 (true) if customer is found

    /* Defines the 10 elements in each of the parallel arrays */

    int custID[10] = {313, 453, 502, 101, 892,

                      475, 792, 912, 343, 633};

    float custBal[10] = {  0.00, 45.43, 71.23, 301.56, 9.08,

                         192.41, 389.00, 229.67, 18.31, 59.54};

    int tempID, inner, outer, didSwap, i; // For sorting

    float tempBal;

    // First, sort the arrays by customer ID */

    for (outer = 0; outer < 9; outer++)

    {

        didSwap = 0; // Becomes 1 (true) if list is not yet ordered

        for (inner = outer; inner < 10; inner++)

        {

            if (custID[inner] < custID[outer])

            {

                tempID = custID[inner]; // Must switch both arrays

                tempBal = custBal[inner]; // or they are no longer 

                                          // linked

                custID[inner] = custID[outer];

24_9780789751980_ch23.indd   217 7/17/13   12:26 PM



218 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

                custBal[inner] = custBal[outer];

                custID[outer] = tempID;

                custBal[outer] = tempBal;

                didSwap = 1; // True because a swap took place

            }

        }

        if (didSwap == 0)

        {

            break;

        }

    }

    /* Interact with the user looking to find a balance */

    printf("\n\n*** Customer Balance Lookup ***\n");

    printf("What is the customer number? ");

    scanf(" %d", &idSearch);

    // Now, look for the ID in the array

    for (ctr=0; ctr<10; ctr++)

    {

        if (idSearch == custID[ctr]) // Do they match?

        {

            found = 1; //Yes, match flag is set to TRUE

            break; //No need to keep looping

        }

        if (custID[ctr] > idSearch) // No need to keep searching

        {

            break;

        }

    }

    // Once the loop has completed, the ID was either found

    // (found = 1) or not

    if (found)

    {

24_9780789751980_ch23.indd   218 7/17/13   12:26 PM



CHAPTER 23  ALPHABETIZING AND ARRANGING YOUR DATA 219

        if (custBal[ctr] > 100)

        {

            printf("\n** That customer's balance is $%.2f.\n",

                   custBal[ctr]);

            printf("No additional credit.\n");

        }

        else // Balance is less than $100.00

        {

            printf("\n**The customer's credit is good!\n");

        }

    }

    else // The ID was not found

    {

        printf("** You have entered an incorrect customer ID.");

        printf("\n ID %3d was not found in the list.\n", idSearch);

    }

    return(0);

}

NOTE Other than the Draw Poker game in Appendix B, “The 
Draw Poker Program,” the preceding program is this book’s hard-
est to understand. Mastering this program puts you at a level 
above that of absolute beginner. Congratulations, and hats off 
to you when you master the logic presented here. See, program-
ming in C isn’t difficult after all!

Before seeing this program, you mastered both array searching and array sorting. 
This program simply puts the two procedures together. About the only additional 
job this program does is keep the two parallel arrays in synch during the search. 
As you can see from the body of the search code, when customer ID elements are 
swapped (within the custID array), the corresponding (via the subscript) element 
in the customer balance array is searched.

An early search termination could take place because of the following:
if (custID[ctr] > idSearch)  // No need to keep searching

{

      break;

}

24_9780789751980_ch23.indd   219 7/17/13   12:26 PM



220 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

When there are several thousand array elements, such an if saves a lot of pro-
cessing time.

Keeping arrays sorted is not always easy or efficient. For instance, you don’t want 
your program sorting a large array every time you add, change, or delete a value 
from the array. After storing several thousand values in an array, sorting the array 
after adding each value takes too much time, even for fast computers. Advanced 
ways of manipulating arrays ensure that you always insert items in sorted order. 
(However, such techniques are way beyond the scope of this book.) You’re  doing 
well without complicating things too much here.

THE ABSOLUTE MINIMUM
The goal of this chapter was to familiarize you with the bubble sort method of 
ordering and alphabetizing values in arrays. You don’t need any new C commands 
to sort values. Sorting is one of the primary array advantages. It shows that arrays 
are a better storage method than separately named variables. The array subscripts 
let you step through the array and swap values, when needed, to sort the array.

Key concepts from this chapter include:

 • Use an ascending sort when you want to arrange array values from low to 
high.

 • Use a descending sort when you want to arrange array values from high to 
low.

 • The nested for loop, such as the one you saw in this chapter, is a perfect 
statement to produce a bubble sort.

 • Don’t swap the values of two variables unless you introduce a third temporary 
variable to hold the in-between value.

 • Sorting routines doesn’t have to be hard; start with the one listed in this 
chapter, and adapt it to your own needs.

 • Don’t forget to keep your arrays sorted. You’ll speed up searching for values.

24_9780789751980_ch23.indd   220 7/17/13   12:26 PM



SOLVING THE MYSTERY OF 
POINTERS
Pointer variables, often called pointers, let you do much more with C than 

you can with programming languages that don’t support pointers. When 

you first learn about pointers, you’ll probably ask, “What’s the point?” 

(Even after you master them, you might ask the same thing!) Pointers pro-

vide the means for the true power of C programming. This book exposes 

the tip of the pointer iceberg. The concepts you learn here will form the 

foundation of your C programming future.

I N  T H I S  C H A P T E R

24
• Working with memory addresses

• Defining pointer variables

• Using the dereferencing *

25_9780789751980_ch24.indd   221 7/17/13   12:26 PM



222 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Memory Addresses
Inside your computer is a bunch of memory. The memory holds your program as it 
executes, and it also holds your program’s variables. Just as every house has a dif-
ferent address, every memory location has a different address. Not coincidentally, 
the memory locations have their own addresses as well. As with house addresses, 
the memory addresses are all unique; no two are the same. Your memory acts a 
little like one big hardware array, with each address being a different subscript 
and each memory location being a different array element.

When you define variables, C finds an unused place in memory and attaches a 
name to that memory location. That’s a good thing. Instead of having to remem-
ber that an order number is stored at memory address 34532, you only have to 
remember the name orderNum (assuming that you named the variable orderNum 
when you defined the variable). The name orderNum is much easier to remember 
than a number.

Defining Pointer Variables
As with any other type of variable, you must define a pointer variable before you 
can use it. Before going further, you need to learn two new operators. Table 24.1 
shows them, along with their descriptions.

TABLE 24.1 The Pointer Operators

Operator Description

& Address-of operator

* Dereferencing operator

You’ve seen the * before. How does C know the difference between multiplication 
and dereferencing? The context of how you use them determines how C interprets 
them. You’ve also seen the & before scanf() variables. The & in scanf() is the 
address-of operator. scanf() requires that you send it the address of non-array 
variables.

25_9780789751980_ch24.indd   222 7/17/13   12:26 PM



CHAPTER 24  SOLVING THE MYSTERY OF POINTERS 223

The following shows how you would define an integer and a floating-point 
variable:
int num;

float value;

To define an integer pointer variable and a floating-point pointer variable, you 
simply insert an *:
int * pNum;  /* Defines two pointer variables */

float * pValue;

NOTE There’s nothing special about the names of pointer 
variables. Many C programmers like to preface pointer variable 
names with a p, as done here, but you can name them anything 
you like. The p simply reminds you they are pointer variables, not 
regular variables.

All data types have corresponding pointer data types—there are character point-
ers, long integer pointers, and so on.

Pointer variables hold addresses of other variables. That’s their primary purpose. 
Use the address-of operator, &, to assign the address of one variable to a pointer. 
Until you assign an address of a variable to a pointer, the pointer is uninitialized 
and you can’t use it for anything.

The following code defines an integer variable named age and stores 19 in 
age. Then a pointer named pAge is defined and initialized to point to age. The 
address-of operator reads just like it sounds. The second line that follows tells C to 
put the address of age into pAge.
int age = 19;       /* Stores a 19 in age */

int * pAge = &age;  /* Links up the pointer */

You have no idea exactly what address C will store age at. However, whatever 
address C uses, pAge will hold that address. When a pointer variable holds the 
address of another variable, it essentially points to that variable. Assuming that 
age is stored at the address 18826 (only C knows exactly where it is stored), 
Figure 24.1 shows what the resulting memory looks like.

25_9780789751980_ch24.indd   223 7/17/13   12:26 PM



224 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

19

Memory

.

.

.

.

Address

18826

.

.

.

.

18826

.

.

.

.

20886

.

.

.

.

age

pAge

Variable
name

FIGURE 24.1

The variable pAge points to age if pAge holds the address of age.

WARNING Just because you define two variables back to 
back doesn’t mean that C stores them back to back in memory. C 
might store them together, but it also might not.

WARNING Never try to set the address of one type of vari-
able to a pointer variable of a different type. C lets you assign the 
address of one type of variable only to a pointer defined with the 
same data type.

The * isn’t part of a pointer variable’s name. You use the * dereferencing opera-
tor for several things, but in the pointer definition, the * exists only to tell C that 
the variable is a pointer, not a regular variable. The following four statements do 
exactly the same thing as the previous two statements. Notice that you don’t use 
* to store the address of a variable in a pointer variable unless you are also defin-
ing the pointer at the same time.
int age; // Defines a regular integer

int * pAge; // Defines a pointer to an integer

age = 19; //Stores 19 in age

pAge = &age; // Links up the pointer

25_9780789751980_ch24.indd   224 7/17/13   12:26 PM



CHAPTER 24  SOLVING THE MYSTERY OF POINTERS 225

Using the Dereferencing *
As soon as you link up a pointer to another variable, you can work with the other 
value by dereferencing the pointer. Programmers never use an easy word when a 
hard one will do just as well (and confuse more people). Dereferencing just means 
that you use the pointer to get to the other variable. When you dereference, use 
the * dereferencing operator.

In a nutshell, here are two ways to change the value of age (assuming that the 
variables are defined as described earlier):

age = 25;

and

*pAge = 25;  /* Stores 25 where pAge points */

This assignment tells C to store the value 25 at the address pointed to by pAge. 
Because pAge points to the memory location holding the variable age, 25 is 
stored in age.

Notice that you can use a variable name to store a value or dereference a pointer 
that points to the variable. You also can use a variable’s value in the same way. 
Here are two ways to print the contents of age:

printf("The age is %d.\n", age);

and

printf("The age is %d.\n", *pAge);

The dereferencing operator is used when a function works with a pointer variable 
that it is sent. In Chapter 32, “Returning Data from Your Functions,” you’ll learn 
how to pass pointers to functions. When a function uses a pointer variable that is 
sent from another function, you must use the dereferencing operator before the 
variable name everywhere it appears.

The true power of pointers comes in the chapters that discuss functions, but get-
ting you used to pointers still makes sense. Here’s a simple program that declares 
integer, float, and character variables, as well as pointer versions of all three:
// Example program #1 from Chapter 24 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter24ex1.c

25_9780789751980_ch24.indd   225 7/17/13   12:26 PM



226 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

/* This program demonstrates pointers by declaring and initializing 

both regular and pointer variables for int, float, and char types 

and then displays the values of each. */

#include <stdio.h>

main()

{

    int kids;

    int * pKids;

    float price;

    float * pPrice;

    char code;

    char * pCode;

    price = 17.50;

    pPrice = &price;

    printf("\nHow many kids are you taking to the water park? ");

    scanf(" %d", &kids);

    pKids = &kids;

    printf("\nDo you have a discount ticket for the park?");

    printf("\nEnter E for Employee Discount, S for Sav-More ");

    printf("Discount, or N for No Discount: ");

    scanf(" %c", &code);

    pCode = &code;

    printf("\nFirst let's do it with the variables:\n");

    printf("You've got %d kids...\n", kids);

    switch (code) {

    case ('E') :

25_9780789751980_ch24.indd   226 7/17/13   12:26 PM



CHAPTER 24  SOLVING THE MYSTERY OF POINTERS 227

        printf("The employee discount saves you 25%% on the ");

        printf("$%.2f price", price);

        printf("\nTotal ticket cost: $%.2f", (price*.75*kids));

        break;

    case ('S') :

        printf("The Sav-more discount saves you 15%% on the ");

        printf("$%.2f price", price);

        printf("\nTotal ticket cost: $%.2f", (price*.85*kids));

        break;

    default : // Either entered N for No Discount or

              // an invalid letter

        printf("You will be paying full price of ");

        printf("$%.2f for your tickets", price);

}

                  // Now repeat the same code, but use dereferenced

                  // pointers and get the same results

    printf("\n\n\nNow let's do it with the pointers:\n");

    printf("You've got %d kids...\n", *pKids);

    switch (*pCode) {

    case ('E') :

        printf("The employee discount saves you 25%% on the ");

        printf("$%.2f price", *pPrice);

        printf("\nTotal ticket cost: $%.2f",

             (*pPrice * .75 * *pKids));

    break;

    case ('S') :

        printf("The Sav-more discount saves you 15%% on the ");

        printf("$%.2f price", *pPrice);

        printf("\nTotal ticket cost $%.2f",

            (*pPrice * .85 * *pKids));

    break;

        default : // Either entered N for No Discount or

                  // an invalid letter

        printf("You will be paying full price of ");

        printf("$%.2f for your tickets", *pPrice);

25_9780789751980_ch24.indd   227 7/17/13   12:26 PM



228 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    }

    return(0);

}

Here’s a sample run of the program:
How many kids are you taking to the water park? 3

Do you have a discount ticket for the park?

Enter E for Employee Discount, S for Sav-More Discount, and N for No 

Discount: S

First let's do it with the variables:

You've got 3 kids…

The Sav-More discount saves you 15% on the $17.50 price

Total ticket cost: $44.63

Now let's do it with the pointers:

You've got 3 kids…

The Sav-More discount saves you 15% on the $17.50 price

Total ticket cost: $44.63

There’s nothing too ground-breaking or complicated in this program. It’s more to 
get you used to using pointers, including declaring, setting, and referencing point-
ers of all kinds. Again, when you use functions that take and return data, you will 
find yourself in need of pointers constantly.

25_9780789751980_ch24.indd   228 7/17/13   12:26 PM



CHAPTER 24  SOLVING THE MYSTERY OF POINTERS 229

THE ABSOLUTE MINIMUM
The goal of this chapter was to introduce you to pointer variables. A pointer vari-
able is nothing more than a variable that holds the location of another variable. 
You can refer to the pointed-to variable by its name or by dereferencing the 
pointer.

Pointers have many uses in C, especially in advanced C programming. As you’ll 
learn in the next chapter, arrays are nothing more than pointers in disguise. 
Because pointers offer more flexibility than arrays, many C programmers stop 
using arrays when they master pointers. Key concepts from this chapter include:

 • Get comfortable with memory addresses because they form the basis of 
pointer usage.

 • Use the & to produce the address of a variable.

 • Use the * to define a pointer variable and to dereference a pointer variable. 
*pAge and age reference the same memory location, as long as you’ve made 
pAge point to age.

 • Don’t try to make a pointer variable of one data type point to a variable of a 
different data type.

 • Don’t worry about the exact address that C uses for variable storage. If you 
use &, C takes care of the rest.

 • Don’t forget to use * when dereferencing your pointer, or you’ll get the wrong 
value.

 • Don’t get too far ahead. You will fully appreciate pointers only after 
programming in C for a while. At th is point (pun not intended!), pointers will 
not seem to help at all. The only thing you might feel a little better about is 
knowing what the & inside scanf() really means.

25_9780789751980_ch24.indd   229 7/17/13   12:26 PM



This page intentionally left blank 



ARRAYS AND POINTERS
This chapter teaches how C’s array and pointer variables share a lot 

of principles. As a matter of fact, an array is a special kind of pointer. 

Because of their similarities, you can use pointer notation to get to array 

values, and you can use array notation to get to pointed-at values.

Perhaps the most important reason to learn how arrays and pointers over-

lap is for character string handling. By combining pointer notation (using 

the dereferencing operation) and array notation (using subscripts), you 

can store lists of character strings and reference them as easily as you ref-

erence array values of other data types.

Also, after you master the heap—a special place in memory that the next 

chapter introduces you to—you’ll see that pointers are the only way to 

get to heap memory, where you put data values.

I N  T H I S  C H A P T E R

25
• Understanding that array names are pointers

• Getting down in the list

• Working with characters and pointers

• Being careful with string lengths

• Creating arrays of pointers

26_9780789751980_ch25.indd   231 7/17/13   12:26 PM



232 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Array Names Are Pointers
An array name is nothing more than a pointer to the first element in that array. 
The array name is not exactly a pointer variable, though. Array names are known 
as pointer constants. The following statement defines an integer array and initial-
izes it:

int vals[5] = {10, 20, 30, 40, 50};

You can reference the array by subscript notation. That much you know already. 
However, C does more than just attach subscripts to the values in memory. C sets 
up a pointer to the array and names that point to vals. You can never change 
the contents of vals; it is like a fixed pointer variable whose address C locks in. 
Figure 25.1 shows you what C really does when you define and initialize vals.

46204
.
.

Addresses

10

20

30

40

50

.

.

vals

vals[0]

vals[1]

vals[2]

vals[3]

vals[4]

32054
.
.

46204

46206

46208

46210

46212

.

.

FIGURE 25.1

The array name is a pointer to the first value in the array.

Because the array name is a pointer (that can’t be changed), you can print the first 
value in the array like this:

printf("The first value is %d.\n", vals[0]);

But more important for this chapter, you can print the first array value like this, 
too:

printf("The first value is %d.\n", *vals);

As you’ll see in a moment, this is also equivalent and accesses vals[0]:

printf("The first value is %d.\n", *(vals+0));

26_9780789751980_ch25.indd   232 7/17/13   12:26 PM



CHAPTER 25  ARRAYS AND POINTERS 233

WARNING The fact that an array is a fixed constant pointer 
is why you can’t put just an array name on the left side of an 
equals sign. You can’t change a constant. (Remember, though, 
that C relaxes this rule only when you first define the array 
because C has yet to fix the array at a specific address.)

Getting Down in the List
Because an array name is nothing more than a pointer to the first value in the 
array, if you want the second value, you only have to add 1 to the array name and 
dereference that location. This set of printf() lines
printf("The first array value is %d.\n", vals[0]);

printf("The second array value is %d.\n", vals[1]);

printf("The third array value is %d.\n", vals[2]);

printf("The fourth array value is %d.\n", vals[3]);

printf("The fifth array value is %d.\n", vals[4]);

does exactly the same as this set:
printf("The first array value is %d.\n", *(vals + 0));

printf("The second array value is %d.\n", *(vals +1));

printf("The third array value is %d.\n", *(vals + 2));

printf("The fourth array value is %d.\n", *(vals + 3));

printf("The fifth array value is %d.\n", *(vals + 4));

If vals is a pointer constant (and it is), and the pointer constant holds a number 
that is the address to the array’s first element, adding 1 or 2 (or whatever) to vals 
before dereferencing vals adds 1 or 2 to the address vals points to.

TIP If you’re wondering about the importance of all this mess, 
hang tight. In a moment, you’ll see how C’s pointer notation lets 
you make C act almost as if it has string variables.

As you might remember, integers usually take more than 1 byte of memory stor-
age. The preceding printf() statements appear to add 1 to the address inside 
vals to get to the next dereferenced memory location, but C helps you out here. 
C adds one int size when you add 1 to an int pointer (and one double size 
when you add 1 to a double pointer, and so on). The expression *(vals + 2) 
tells C that you want the third integer in the list that vals points to.

26_9780789751980_ch25.indd   233 7/17/13   12:26 PM



234 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Characters and Pointers
The following two statements set up almost the same thing in memory. The only 
difference is that, in the second statement, pName is a pointer variable, not a 
pointer constant:
char name[] = "Andrew B. Mayfair";   /* name points to A */

char * pName = "Andrew B. Mayfair";  /* pName points to A */

Because pName is a pointer variable, you can put it on the left side of an equals 
sign! Therefore, you don’t always have to use strcpy() if you want to assign a 
character pointer a new string value. The character pointer will only point to the 
first character in the string. However, %s and all the string functions work with 
character pointers just as easily as with character arrays (the two are the same 
thing) because these functions know to stop at the null zero.

To put a different name in the name array, you have to use strcpy() or assign 
the string one character at a time—but to make pName point to a different name, 
you get to do this:

pName = "Theodore M. Brooks";

TIP The only reason string assignment works is that C puts all 
your program’s string literals into memory somewhere and then 
replaces them in your program with their addresses. C is not 
really putting Theodore M. Brooks into pName because pName 
can hold only addresses. C is putting the address of Theodore 
M. Brooks into pName.

You now have a way to assign strings new values without using strcpy(). It took 
a little work to get here, but aren’t you glad you made it? If so, settle down—
there’s just one catch (isn’t there always?).

Be Careful with Lengths
It’s okay to store string literals in character arrays as just described. The new 
strings that you assign with = can be shorter or longer than the previous strings. 
That’s nice because you might recall that you can’t store a string in a character 
array that is longer than the array you reserved initially.

You must be extremely careful, however, not to let the program store strings lon-
ger than the first string you point to with the character pointer. This is a little com-
plex, but keep following along—because this chapter stays as simple and short as 
possible. Never set up a character pointer variable like this:

26_9780789751980_ch25.indd   234 7/17/13   12:26 PM



CHAPTER 25  ARRAYS AND POINTERS 235

main()

{

char * name = "Tom Roberts";

/* Rest of program follows… */

and then later let the user enter a new string with gets() like this:

gets(name); /* Not very safe */

The problem with this statement is that the user might enter a string longer than 
Tom Roberts, the first string assigned to the character pointer. Although a char-
acter pointer can point to strings of any length, the gets() function, along with 
scanf(), strcpy(), and strcat(), doesn’t know that it’s being sent a character 
pointer. Because these functions might be sent a character array that can’t change 
location, they map the newly created string directly over the location of the string in 
name. If a string longer than name is entered, other data areas could be overwritten.

WARNING Yes, this is a little tedious. You might have to 
read this section again later after you get more comfortable with 
pointers and arrays.

If you want to have the advantage of a character pointer—that is, if you want to be 
able to assign string literals to the pointer and still have the safety of arrays so you 
can use the character pointer to get user input—you can do so with a little trick.

If you want to store user input in a string pointed to by a pointer, first reserve 
enough storage for that input string. The easiest way to do this is to reserve a 
character array and then assign a character pointer to the beginning element of 
that array:
char input[81]; // Holds a string as long as 80 characters

char *iptr = input; // Also could have done char *iptr = &input[0]

Now you can input a string by using the pointer as long as the string entered by 
the user is not longer than 81 bytes long:

gets(iptr);  /* Makes sure that iptr points to the string typed by 

the user */

You can use a nice string-input function to ensure that entered strings don’t 
get longer than 81 characters, including the null zero. Use fgets() if you want 
to limit the number of characters accepted from the user. fgets() works like 
gets(), except that you specify a length argument. The following statement 
shows fgets() in action:

fgets(iptr, 81, stdin);  /*Gets up to 80 chars and adds null zero */

26_9780789751980_ch25.indd   235 7/17/13   12:26 PM



236 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The second value is the maximum number of characters you want to save from 
the user’s input. Always leave one for the string’s null zero. The pointer iptr can 
point to a string as long as 81 characters. If the user enters a string less than 81 
characters, iptr points to that string with no problem. However, if the user goes 
wild and enters a string 200 characters long, iptr points only to the first 80, fol-
lowed by a null zero at the 81st position that fgets() added, and the rest of the 
user’s input is ignored.

TIP You can use fgets() to read strings from data files. The 
third value of fgets() can be a disk file pointer, but you’ll learn 
about disk pointers later in the book. For now, use stdin as the 
third value you send to fgets() so that fgets() goes to the 
keyboard for input and not somewhere else.

You also can assign the pointer string literals using the assignment like this:

iptr = "Mary Jayne Norman";

Arrays of Pointers
If you want to use a bunch of pointers, create an array of them. An array of point-
ers is just as easy to define as an array of any other kind of data, except that you 
must include the * operator after the data type name. The following statements 
reserve an array of 25 integer pointers and an array of 25 character pointers:
int * ipara[25];   /* 25 pointers to integers */

char * cpara[25];  /* 25 pointers to characters */

The array of characters is most interesting because you can store a list of strings in 
the array. More accurately, you can point to various strings. The following program 
illustrates two things: how to initialize an array of strings at definition time and how 
to print them using a for loop:

NOTE Actually, the program does a bit more than that. It 
also gets you to rate the nine strings (in this case, movie titles) 
that you’ve seen on a scale of 1 to 10 and then reuses our friendly 
bubble sort routine—but instead of going small to big, the sort 
reorders your list from highest rating to lowest. There’s nothing 
wrong with going back and mixing in previously learned concepts 
when trying new lessons—that’s how you start to build robust and 
interesting programs!

// Example program #1 from Chapter 25 of Absolute Beginner's Guide 

// to C, 3rd Edition

26_9780789751980_ch25.indd   236 7/17/13   12:26 PM



CHAPTER 25  ARRAYS AND POINTERS 237

// File Chapter25ex1.c

/* This program declares and initializes an array of character 

pointers and then asks for ratings associated  */

#include <stdio.h>

main()

{

       int i;

       int ctr = 0;

       char ans;

//Declaring our array of 9 characters and then initializing them

       char * movies[9] = {"Amour", "Argo",

                                    "Beasts of the Southern Wild",

                                    "Django Unchained",

                                    "Les Miserables",

                                    "Life of Pi", "Lincoln",

                                    "Silver Linings Playbook",

                                    "Zero Dark Thirty"};

 int movieratings[9]; // A corresponding array of 9 integers

                      // for movie ratings

       char * tempmovie = "This will be used to sort rated movies";

       int outer, inner, didSwap, temprating; // for the sort loop

       printf("\n\n*** Oscar Season 2012 is here! ***\n\n");

       printf("Time to rate this year's best picture nominees:");

       for (i=0; i< 9; i++)

       {

           printf("\nDid you see %s? (Y/N): ", movies[i]);

           scanf(" %c", &ans);

26_9780789751980_ch25.indd   237 7/17/13   12:26 PM



238 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

           if ((toupper(ans)) == 'Y')

           {

               printf("\nWhat was your rating on a scale ");

               printf("of 1-10: ");

               scanf(" %d", &movieratings[i]);

               ctr++; // This will be used to print only movies 

                      // you've seen

               continue;

           }

           else

           {

               movieratings[i] = -1;

           }

       }

    // Now sort the movies by rating (the unseen will go 

    // to the bottom)

    for (outer = 0; outer < 8; outer++)

    {

        didSwap = 0;

        for (inner = outer; inner < 9; inner++)

        {

            if (movieratings[inner] > movieratings[outer])

            {

                tempmovie = movies[inner];

                temprating = movieratings[inner];

                movies[inner] = movies[outer];

                movieratings[inner] = movieratings[outer];

                movies[outer] = tempmovie;

                movieratings[outer] = temprating;

                didSwap = 1;

            }

        }

        if (didSwap == 0)

        {

            break;

26_9780789751980_ch25.indd   238 7/17/13   12:26 PM



CHAPTER 25  ARRAYS AND POINTERS 239

        }

    }

    // Now to print the movies you saw in order

    printf("\n\n** Your Movie Ratings for the 2012 Oscar ");

    printf("Contenders **\n");

    for (i=0; i < ctr; i++)

    {

        printf("%s  rated a %d!\n", movies[i], movieratings[i]);

    }

    return(0);

}

Here is a sample output from this program:
*** Oscar Season 2012 is here! ***

Time to rate this year's best picture nominees:

Did you see Amour? (Y/N): Y

What was your rating on a scale of 1-10: 6

Did you see Argo? (Y/N): Y

What was your rating on a scale of 1-10: 8

Did you see Beasts of the Southern Wild? (Y/N): N

Did you see Django Unchained? (Y/N): Y

What was your rating on a scale of 1-10: 7

Did you see Les Miserables? (Y/N): Y

What was your rating on a scale of 1-10: 7

Did you see Life of Pi? (Y/N): N

Did you see Lincoln? (Y/N): Y

What was your rating on a scale of 1-10: 6

Did you see Silver Linings Playbook? (Y/N): Y

26_9780789751980_ch25.indd   239 7/17/13   12:26 PM



240 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

What was your rating on a scale of 1-10: 9

Did you see Zero Dark Thirty? N

** Your Movie Ratings for the 2012 Oscar Contenders **

Silver Linings Playbook rated a 9.

Argo rated a 8.

Les Miserables rated a 7.

Django Unchained rated a 7.

Lincoln rated a 6.

Amour rated a 6.

Figure 25.2 shows how the program sets up the movies array in memory. Each 
element is nothing more than a character pointer that contains the address of a 
different person’s name. It’s important to understand that movies does not hold 
strings—just pointers to strings.

movies
Armour

Argo

Beasts of the Southern Wild

Django Unchained

Les Miserables

Life of Pi

Lincoln

Silver Linings Playbook

Zero Dark Thirty

FIGURE 25.2

The movies array contains pointers to strings.

See, even though there is no such thing as a string array in C (because there are 
no string variables), storing character pointers in movies makes the program act 
as though movies is a string array.

The program then loops through the nine movies in the array and asks the user 
whether he or she saw each one. If the answer is Y (or y after it is converted with the 
toupper() function), the program goes on to ask for an integer rating of 1 to 10. 
It also increments a counter (ctr) so the program will eventually know how many 
movies were seen. If the answer is N (or any character other than Y or y), the rating 
of -1 is assigned to that movie, so it will fall to the bottom during the movie sort.

26_9780789751980_ch25.indd   240 7/17/13   12:26 PM



CHAPTER 25  ARRAYS AND POINTERS 241

After the movies are all rated, a bubble sort is used to rate the movies best to 
worst. Isn’t it nice to know that you can use your sort routine on string arrays? The 
sorted array is now ready to be printed.  However, the for loop iterates only ctr 
times, meaning that it will not print the names of movies you didn’t see.

THE ABSOLUTE MINIMUM
The goal of this chapter was to get you thinking about the similarities between 
arrays and pointers. An array name is really just a pointer that points to the first 
element in the array. Unlike pointer variables, an array name can’t change. This is 
the primary reason an array name can’t appear on the left side of an equals sign.

Using pointers allows more flexibility than arrays. You can directly assign a string 
literal to a character pointer variable, whereas you must use the strcpy() func-
tion to assign strings to arrays. You’ll see many uses for pointer variables through-
out your C programming career. Key concepts from this chapter include:

 • Use character pointers if you want to assign string literals directly.

 • Use either array subscript notation or pointer dereferencing to access array 
and pointer values.

 • Don’t use a built-in function to fill a character pointer’s location unless that 
character pointer was originally set up to point to a long string.

26_9780789751980_ch25.indd   241 7/17/13   12:26 PM



This page intentionally left blank 



MAXIMIZING YOUR 
COMPUTER’S MEMORY
Absolute beginners to C aren’t the only ones who might find this chap-

ter’s concepts confusing at first. Even advanced C programmers get 

mixed up when dealing with the heap. The heap is the collection of 

unused memory in your computer. The memory left over—after your pro-

gram, your program’s variables, and your operating system’s workspace—

comprises your computer’s available heap space, as Figure 26.1 shows.

Many times you’ll want access to the heap, because your program will 

need more memory than you initially defined in variables and arrays. This 

chapter gives you some insight into why and how you want to use heap 

memory instead of variables.

You don’t assign variable names to heap memory. The only way to access 

data stored in heap memory is through pointer variables. Aren’t you glad 

you learned about pointers already? Without pointers, you couldn’t learn 

about the heap.

I N  T H I S  C H A P T E R

26
• Thinking of the heap

• Understanding why you need the heap

• Allocating the heap

• Taking action if there’s not enough heap memory

• Freeing heap memory

• Handling multiple allocations

27_9780789751980_ch26.indd   243 7/17/13   12:26 PM



244 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Your operating
system

Your
C

program

Your
variables

Heap

FIGURE 26.1

The heap is unused memory.

NOTE The free heap memory is called free heap or unallo-
cated heap memory. The part of the heap in use by your program 
at any one time is called the allocated heap. Your program might 
use varying amounts of heap space as the program executes. So 
far, no program in this book has used the heap.

Thinking of the Heap
Now that you’ve learned what the heap is—the unused section of contiguous 
memory—throw out what you’ve learned! You’ll more quickly grasp how to use 
the heap if you think of the heap as just one big heap of free memory stacked up 
in a pile. The next paragraph explains why.

You’ll be allocating (using) and deallocating (freeing back up) heap memory as 
your program runs. When you request heap memory, you don’t know exactly from 
where on the heap the new memory will come. Therefore, if one statement in 
your program grabs heap memory, and then the very next statement also grabs 
another section of heap memory, that second section of the heap might not physi-
cally reside right after the first section you allocated.

Just as when scooping dirt from a big heap, one shovel does not pick up dirt 
granules that were right below the last shovel of dirt. Also, when you throw the 
shovel of dirt back onto the heap, that dirt doesn’t go right back where it was. 
Although this analogy might seem to stretch the concept of computer memory, 
you’ll find that you’ll understand the heap much better if you think of the heap 
of memory like you think of the heap of dirt: You have no idea exactly where the 
memory you allocate and deallocate will come from or go back to. You know only 
that the memory comes and goes from the heap.

27_9780789751980_ch26.indd   244 7/17/13   12:26 PM



CHAPTER 26  MAXIMIZING YOUR COMPUTER’S MEMORY 245

If you allocate 10 bytes of heap memory at once, those 10 bytes will be contigu-
ous. The important thing to know is that the next section of heap memory you 
allocate will not necessarily follow the first, so you shouldn’t count on anything like 
that.

Your operating system uses heap memory along with your program. If you work 
on a networked computer or use a multitasking operating environment such as 
Windows, other tasks might be grabbing heap memory along with your program. 
Therefore, another routine might have come between two of your heap-allocation 
statements and allocated or deallocated memory.

You have to keep track of the memory you allocate. You do this with pointer vari-
ables. For instance, if you want to allocate 20 integers on the heap, you use an 
integer pointer. If you want to allocate 400 floating-point values on the heap, you 
use a floating-point pointer. The pointer always points to the first heap value of 
the section you just allocated. Therefore, a single pointer points to the start of the 
section of heap you allocate. If you want to access the memory after the first value 
on the heap, you can use pointer notation or array notation to get to the rest of 
the heap section you allocated. (See, the last chapter’s pointer/array discussion 
really does come in handy!)

But Why Do I Need the Heap?
Okay, before learning exactly how you allocate and deallocate heap memory, you 
probably want more rationalization about why you even need to worry about the 
heap. After all, the variables, pointers, and arrays you’ve learned about so far have 
sufficed nicely for program data.

The heap memory does not always replace the variables and arrays you’ve been 
learning about. The problem with the variables you’ve learned about so far is that 
you must know in advance exactly what kind and how many variables you will 
want. Remember, you must define all variables before you use them. If you define 
an array to hold 100 customer IDs, but the user has 101 customers to enter, your 
program can’t just expand the array at runtime. Some programmers (like you) have 
to change the array definition and recompile the program before the array can 
hold more values.

With the heap memory, however, you don’t have to know in advance how much 
memory you need. Similar to an accordion, the heap memory your program uses 
can grow or shrink as needed. If you need another 100 elements to hold a new 
batch of customers, your program can allocate that new batch at runtime without 
needing another compilation.

27_9780789751980_ch26.indd   245 7/17/13   12:26 PM



246 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

WARNING This book doesn’t try to fool you into thinking 
that this chapter can answer all your questions. Mastering the 
heap takes practice—and, in reality, programs that really need the 
heap are beyond the scope of this book. Nevertheless, when you 
finish this chapter, you’ll have a more solid understanding of how 
to access the heap than you would get from most books because 
of the approach that’s used.

Commercial programs such as spreadsheets and word processors must rely heav-
ily on the heap. After all, the programmer who designs the program cannot know 
exactly how large or small a spreadsheet or word processing document will be. 
Therefore, as you type data into a spreadsheet or word processor, the underlying 
program allocates more data. The program likely does not allocate the data 1 byte 
at a time as you type because memory allocation is not always extremely efficient 
when done 1 byte at a time. More than likely, the program allocates memory in 
chunks of code, such as 100-byte or 500-byte sections.

So why can’t the programmers simply allocate huge arrays that can hold a huge 
spreadsheet or document instead of messing with the heap? For one thing, mem-
ory is one of the most precious resources in your computer. As we move into net-
worked and windowed environments, memory becomes even more precious. Your 
programs can’t allocate huge arrays for those rare occasions when a user might 
need that much memory. Your program would solely use all that memory, and 
other tasks could not access that allocated memory.

NOTE The heap enables your program to use only as much 
memory as it needs. When your user needs more memory (for 
instance, to enter more data), your program can allocate the 
memory. When your user is finished using that much memory 
(such as clearing a document to start a new one in a word proces-
sor), you can deallocate the memory, making it available for other 
tasks that might need it.

How Do I Allocate the Heap?
You must learn only two new functions to use the heap. The malloc() (for 
memory allocate) function allocates heap memory, and the free() function deal-
locates heap memory.

TIP Be sure to include the stdlib.h header file in all the pro-
grams you write that use malloc() and free().

27_9780789751980_ch26.indd   246 7/17/13   12:26 PM



CHAPTER 26  MAXIMIZING YOUR COMPUTER’S MEMORY 247

We might as well get to the rough part. malloc() is not the most user-friendly 
function for newcomers to understand. Perhaps looking at an example of 
malloc() is the best place to start. Suppose you were writing a temperature-
averaging program for a local weather forecaster. The more temperature readings 
the user enters, the more accurate the correct prediction will be. You decide that 
you will allocate 10 integers to hold the first 10 temperature readings. If the user 
wants to enter more, your program can allocate another batch of 10, and so on.

You first need a pointer to the 10 heap values. The values are integers, so you 
need an integer pointer. You need to define the integer pointer like this:

int * temps;  /* Will point to the first heap value */

Here is how you can allocate 10 integers on the heap using malloc():

temps = (int *) malloc(10 * sizeof(int));  /* Yikes! */

That’s a lot of code just to get 10 integers. The line is actually fairly easy to under-
stand when you see it broken into pieces. The malloc() function requires only a 
single value: the number of bytes you want allocated. Therefore, if you wanted 10 
bytes, you could do this:

malloc(10);

The problem is that the previous description required not 10 bytes, but 10 inte-
gers. How many bytes of memory do 10 integers require? 10? 20? The answer, of 
course, is that it depends. Only sizeof() knows for sure.

Therefore, if you want 10 integers allocated, you must tell malloc() that you 
want 10 sets of bytes allocated, with each set of bytes being enough for an inte-
ger. Therefore, the previous line included the following malloc() function call:

malloc(10 * sizeof(int))

This part of the statement told malloc() to allocate, or set aside, 10 contigu-
ous integer locations on the heap. In a way, the computer puts a fence around 
those 10 integer locations so that subsequent malloc() calls do not intrude on 
this allocated memory. Now that you’ve mastered that last half of the malloc() 
statement, there’s not much left to understand. The first part of malloc() is fairly 
easy.

malloc() always performs the following two steps (assuming that enough heap 
memory exists to satisfy your allocation request):

 1. Allocates the number of bytes you request and makes sure no other program 
can overwrite that memory until your program frees it

 2. Assigns your pointer to the first allocated value

27_9780789751980_ch26.indd   247 7/17/13   12:26 PM



248 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Figure 26.2 shows the result of the previous temperature malloc() function call. 
As you can see from the figure, the heap of memory (shown here as just that, a 
heap) now contains a fenced-off area of 10 integers, and the integer pointer vari-
able named temps points to the first integer. Subsequent malloc() function calls 
will go to other parts of the heap and will not tread on the allocated 10 integers.

temps

The heap

FIGURE 26.2

After allocating the 10 integers.

What do you do with the 10 integers you just allocated? Treat them like an array! 
You can store data by referring to temps[0], temps[1], and so on. You know 
from the last chapter that you access contiguous memory using array notation, 
even if that memory begins with a pointer. Also remember that each set of allo-
cated memory will be contiguous, so the 10 integers will follow each other just as 
if you allocated temps as a 10-integer array.

The malloc() allocation still has one slight problem. We still have to explain the 
left portion of the temperature malloc(). What is the (int *) for?

The (int *) is a typecast. You’ve seen other kinds of typecasts in this book. To 
convert a float value to an int, you place (int) before the floating-point value, 
like this:

aVal = (int)salary;

The * inside a typecast means that the typecast is a pointer typecast. malloc() 
always returns a character pointer. If you want to use malloc() to allocate inte-
gers, floating points, or any kind of data other than char, you have to typecast 
the malloc() so that the pointer variable that receives the allocation (such as 
temps) receives the correct pointer data type. temps is an integer pointer; you 
should not assign temps to malloc()’s allocated memory unless you typecast 
malloc() into an integer pointer. Therefore, the left side of the previous 
malloc() simply tells malloc() that an integer pointer, not the default charac-
ter pointer, will point to the first of the allocated values.

27_9780789751980_ch26.indd   248 7/17/13   12:26 PM



CHAPTER 26  MAXIMIZING YOUR COMPUTER’S MEMORY 249

NOTE Besides defining an array at the top of main(), what 
have you gained by using malloc()? For one thing, you can use 
the malloc() function anywhere in your program, not just where 
you define variables and arrays. Therefore, when your program is 
ready for 100 double values, you can allocate those 100 double 
values. If you used a regular array, you would need a statement like 
this toward the top of main():

doublemyVals[100];  /* A regular array of 100 doubles */

Those 100 double values would sit around for the life of the pro-
gram, taking up memory resources from the rest of the system, 
even if the program only needed the 100 double values for only a 
short time. With malloc(), you need to define only the pointer 
that points to the top of the allocated memory for the program’s 
life, not the entire array.

If There’s Not Enough Heap Memory
In extreme cases, not enough heap memory might exist to satisfy malloc()’s 
request. The user’s computer might not have a lot of memory, another task might 
be using a lot of memory, or your program might have previously allocated every-
thing already. If malloc() fails, its pointer variable points to a null value, 0. 
Therefore, many programmers follow a malloc() with an if, like this:
temps = (int *) malloc(10 * sizeof(int));

if (temps == 0)

{

       printf("Oops! Not Enough Memory!\n");

       exit(1); // Terminate the program early

}

// Rest of program would follow…

If malloc() works, temps contains a valid address that points to the start of the 
allocated heap. If malloc() fails, the invalid address of 0 is pointed to (heap mem-
ory never begins at address zero) and the error prints onscreen.

TIP Programmers often use the not operator, !, instead of test-
ing a value against 0, as done here. Therefore, the previous if test 
would more likely be coded like this:

if (!temps)     /* Means, if not true */

27_9780789751980_ch26.indd   249 7/17/13   12:26 PM



250 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Freeing Heap Memory
When you’re done with the heap memory, give it back to the system. Use free() 
to do that. free() is a lot easier than malloc(). To free the 10 integers allo-
cated with the previous malloc(), use free() in the following manner:

free(temps);   /* Gives the memory back to the heap */

If you originally allocated 10 values, 10 are freed. If the malloc() that allocated 
memory for temps had allocated 1,000 values, all 1,000 would be freed. After 
freeing the memory, you can’t get it back. Remember, free() tosses the allo-
cated memory back onto the heap of memory—and after it’s tossed, another task 
might grab the memory (remember the dirt heap analogy). If you use temps after 
the previous free(), you run the risk of overwriting memory and possibly locking 
up your computer, requiring a reboot.

If you fail to free allocated memory, your operating system reclaims that memory 
when your program ends. However, forgetting to call free() defeats the purpose 
of using heap memory in the first place. The goal of the heap is to give your pro-
gram the opportunity to allocate memory at the point the memory is needed and 
deallocate that memory when you’re finished with it.

Multiple Allocations
An array of pointers often helps you allocate many different sets of heap memory. 
Going back to the weather forecaster’s problem, suppose the forecaster wanted 
to enter historical temperature readings for several different cities. But the fore-
caster has a different number of readings for each different city.

An array of pointers is useful for such a problem. Here is how you could allocate 
an array of 50 pointers:

int * temps[50];   /* 50 integer pointers */

The array will not hold 50 integers (because of the dereferencing operator in 
the definition); instead, the array holds 50 pointers. The first pointer is called 
temps[0], the second pointer is temps[1], and so on. Each of the array ele-
ments (each pointer) can point to a different set of allocated heap memory. 
Therefore, even though the 50 pointer array elements must be defined for all of 
main(), you can allocate and free the data pointed to as you need extra memory.

27_9780789751980_ch26.indd   250 7/17/13   12:26 PM



CHAPTER 26  MAXIMIZING YOUR COMPUTER’S MEMORY 251

Consider the following section of code that the forecaster might use:
for (ctr = 0; ctr < 50; ctr++)

{

       puts("How many readings for the city?")

       scanf(" %d", &num);

// Allocate that many heap values

       temps[ctr] = (int *)malloc(num * sizeof(int));

// This next section of code would ask for each temperature

// reading for the city

}

// Next section of code would probably be calculations related

// to the per-city data entry

// Don't forget to deallocate the heap memory when done

for (ctr = 0; ctr < 50; ctr++)

{

       free(temps[ctr]);

}

Of course, such code requires massive data entry. The values would most likely 
come from a saved file instead of from the user. Nevertheless, the code gives you 
insight into the advanced data structures available by using the heap. Also, real-
world programs aren’t usually of the 20-line variety you often see in this book. 
Real-world programs, although not necessarily harder than those here, are usu-
ally many pages long. Throughout the program, some sections might need extra 
memory, whereas other sections do not. The heap lets you use memory efficiently.

Figure 26.3 shows you what the heap memory might look like while allocating the 
temps array memory (after the first 4 of the 50 malloc() calls). As you can see, 
temps belongs to the program’s data area, but the memory each temps element 
points to belongs to the heap. You can free up the data temps points to when 
you no longer need the extra workspace.

27_9780789751980_ch26.indd   251 7/17/13   12:26 PM



252 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

temps

The heap

[0]

[49]

[48]

:
:

[3]

[2]
[1]

:
:

FIGURE 26.3

Each temps element points to a different part of the heap.

This has been a long chapter with some complicated material, but you’re almost 
finished! We just need to close the chapter with a program that uses both 
malloc() and free(), as well as shows you how a small computer program 
written by you can deal with massive amounts of data.
// Example program #1 from Chapter 26 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter26ex1.c

/* The program looks for a number of random integers, allocates an 

array and fills it with numbers between 1 and 500 and then loops 

through all the numbers and figures out the smallest, the biggest, 

and the average. It then frees the memory. */

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

main()

{

    int i, aSize;

    int * randomNums;

27_9780789751980_ch26.indd   252 7/17/13   12:26 PM



CHAPTER 26  MAXIMIZING YOUR COMPUTER’S MEMORY 253

    time_t t;

    double total = 0;

    int biggest, smallest;

    float average;

    srand(time(&t));

    printf("How many random numbers do you want in your array? ");

    scanf(" %d", &aSize);

    // Allocate an array of integers equal to the number of

    // elements requested by the user

    randomNums = (int *) malloc(aSize * sizeof(int));

    // Test to ensure that the array allocated properly

    if (!randomNums)

    {

        printf("Random array allocation failed!\n");

        exit(1);

    }

    // Loops through the array and assigns a random

    // number between 1 and 500 to each element

    for (i = 0; i < aSize; i++)

    {

        randomNums[i] = (rand() % 500) + 1;

    }

    // Initialize the biggest and smallest number

    // for comparison's sake

    biggest = 0;

    smallest = 500;

27_9780789751980_ch26.indd   253 7/17/13   12:26 PM



254 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    // Loop through the now-filled array

    // testing for the random numbers that

    // are biggest, smallest, and adding all

    // numbers together to calculate an average

    for (i = 0; i < aSize; i++)

    {

        total += randomNums[i];

        if (randomNums[i] > biggest)

        {

            biggest = randomNums[i];

        }

        if (randomNums[i] < smallest)

        {

            smallest = randomNums[i];

        }

    }

    average = ((float)total)/((float)aSize);

    printf("The biggest random number is %d.\n", biggest);

    printf("The smallest random number is %d.\n", smallest);

    printf("The average of the random numbers is %.2f.\n", average);

    // When you use malloc, remember to then use free

    free(randomNums);

    return(0);

}

This program has a minimum of user interaction and looks only for the number of 
random numbers to create. It’s an excellent way to test how much memory is on 
your computer by vastly increasing the size of your random number array. I was 
able to create an array of 12 million elements without triggering the malloc fail-
ure section. In fact, when writing this program originally, my total variable failed 
before the malloc did. total was originally an int, and when I set the array 
to 10 million values, the sum total of the random numbers was bigger than the 

27_9780789751980_ch26.indd   254 7/17/13   12:26 PM



CHAPTER 26  MAXIMIZING YOUR COMPUTER’S MEMORY 255

allowed maximum for an int variable. My average calculation was thus wrong. (It 
seemed wrong—after all, how could the average of numbers between 1 and 500 
be –167!) When that variable was increased to a double, I was able to build even 
bigger arrays of random numbers.

Another interesting fact is that, with a small number of elements, your largest, 
smallest, and average numbers can fluctuate, but the more elements are in your 
array, the more likely you will get a small of 1, a big of 500, and an average right 
in the middle.

THE ABSOLUTE MINIMUM
malloc() allocates heap memory for your programs. You access that heap via 
a pointer variable, and you can then get to the rest of the allocated memory 
using array notation based on the pointer assigned by the malloc(). When you 
are done with heap memory, deallocate that memory with the free() function. 
free() tosses the memory back to the heap so other tasks can use it. Key con-
cepts in this chapter include:

 • Use malloc() and free() to allocate and release heap memory.

 • Tell malloc() exactly how large each allocation must be by using the 
sizeof() operator inside malloc()’s parentheses.

 • Allocate only the pointer variables at the top of your function along with the 
other variables. Put the data itself on the heap when you need data values 
other than simple loop counters and totals.

 • If you must track several chunks of heap memory, use an array of pointers. 
Each array element can point to a different amount of heap space.

 • Check to make sure malloc() worked properly. malloc() returns a 0 if the 
allocation fails.

 • Don’t always rely on regular arrays to hold a program’s data. Sometimes a 
program needs data for just a short time, and using the heap makes better 
use of your memory resources.

27_9780789751980_ch26.indd   255 7/17/13   12:26 PM



This page intentionally left blank 



SETTING UP YOUR DATA 
WITH STRUCTURES
Arrays and pointers are nice for lists of values, but those values must all 

be of the same data type. Sometimes you have different data types that 

must go together and be treated as a whole.

A perfect example is a customer record. For each customer, you have to 

track a name (character array), balance (double floating-point), address 

(character array), city (character array), state (character array), and zip code 

(character array or long integer). Although you would want to be able to 

initialize and print individual items within the customer record, you would 

also want to access the customer record as a whole, such as when you 

would write it to a customer disk file (as explained in the next chapter).

The C structure is the vehicle by which you group data such as would 

appear in a customer record and get to all the individual parts, called 

members. If you have many occurrences of that data and many custom-

ers, you need an array of structures.

I N  T H I S  C H A P T E R

27
• Defining a structure

• Putting data in structure variables

28_9780789751980_ch27.indd   257 7/17/13   12:26 PM



258 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE Other programming languages have equivalent data 
groupings called records.  The designers of C wanted to call these 
data groupings structures, however, so that’s what they are in C.

Many times, a C structure holds data that you might store on 3×5 cards in a cardfile. Before 

personal computers, companies maintained a cardfile box with cards that contained a cus-

tomer’s name, balance, address, city, state, and zip code, like the customer structure just 

described. Later in this chapter, you’ll see how C structures are stored in memory, and you’ll 

see even more similarities to the cardfile cards.

Defining a Structure
The first thing you must do is tell C exactly what your structure will look like. When 
you define variables of built-in data types such as an int, you don’t have to tell 
C what an int is—C already knows. When you want to define a structure, how-
ever, you must first tell C exactly what your structure looks like. Only then can you 
define variables for that structure.

Try to view a structure as just a group of individual data types. The entire structure 
has a name and can be considered a single value (such as a customer) taken as 
a whole. The individual members of the structure are built-in data types, such as 
int and char arrays, that could represent an age and a name. You can access the 
individual members if you want to.

Not only is a structure like a cardfile, but you also can see that a structure is a lot 
like a paper form with blanks to fill in. A blank form, such as one you might fill 
out when applying for a credit card, is useless by itself. If the credit card company 
prints 10,000 forms, that doesn’t mean it has 10,000 customers. Only when some-
one fills out the form is there a customer, and only when you define a variable for 
the structure you describe does C give memory space to a structure variable.

To define an int variable, you only have to do this:

int i;

You don’t first have to tell C what an int is. To define a structure variable, you 
must first define what the structure looks like and assign a data type name, such as 
customer, to C. After defining the structure’s format, you can define a variable.

The struct statement defines the look (or layout) of a structure. Here is the for-
mat of struct:
struct [structure tag]{

28_9780789751980_ch27.indd   258 7/17/13   12:26 PM



CHAPTER 27  SETTING UP YOUR DATA WITH STRUCTURES 259

     member definition;

     member definition;

     …

     member definition;

};

Again, the struct defines only the layout, or the look, of a structure. The 
structure tag is a name you give to that particular structure’s look, but the 
structure tag has nothing to do with a structure variable name you might cre-
ate later. After you define the format of a structure, you can define variables.

The member definitions are nothing more than regular built-in data type defi-
nitions such as int age; in the previous example. Instead of defining variables, 
though, you are defining members, essentially giving a name to that particular 
part of the structure.

WARNING You can define a variable at the same time as 
the struct declaration statement, but most C programmers 
don’t do so. If you want to define a variable for the structure at 
the same time you declare the structure format itself, insert one 
or more variable names before the struct statement’s closing 
semicolon.

Structures are a lot to absorb. The following example will aid your understanding.

Let’s say you’re writing a program to track a simple retail computer inventory. 
You need to track a computer manufacturer and model, amount of disk space (in 
megabytes), amount of memory space (in megabytes), quantity, cost, and retail 
price.

First, you must use struct to define a structure. Here is a good candidate:
struct invStruct {

     char manuf[25]; // Manufacturer name

     char model[15]; // Model code

     int diskSpace; // Disk size in Gigabytes

     int memSpace; // Memory Space in Gigabytes

     int ports; // The number of USB ports on the system

     int quantity; // Number in inventory

     float cost; // Cost of computer

     float price; // Retail price of computer

};

28_9780789751980_ch27.indd   259 7/17/13   12:26 PM



260 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Figure 27.1 shows you what this structure format looks like.

manuf

model

diskSpace

memSpace

ports

quantity

cost

price

Entire structure is called invStruct.

Member Names

FIGURE 27.1

The format of the invStruct structure.

The previous structure definition does not define eight variables! The previous 
structure definition defines a single structure data type. Remember, you don’t 
have to tell C what an integer looks like before defining an integer variable; you 
must, however, tell C what an invStruct looks like before defining variables for 
that structure data type. The previous struct statement tells C what the user’s 
invStruct is supposed to look like. After C learns the structure’s format, C can 
define variables that take on the format of that structure when the user is ready to 
define variables.

If you create a structure that you might use again sometime, consider putting it 
in its own header file, or in a header file along with other common structures. Use 
#include to pull that header file into any source code that needs it. If you ever 
need to change the structure definition, you have to look in only one place to 
change it: in its header file.

Often a programmer puts structure declarations, such as the previous one for 
invStruct, before main() and then defines variables for that structure in 
main() and in any other functions below main(). To create variables for the 
structure, you must do the same thing you do when you create variables for any 
data type: Put the structure name before a variable list. Because there is no data 
type named invStruct, you must tell C that invStruct is a struct name. You 
can define three structure variables like this:

28_9780789751980_ch27.indd   260 7/17/13   12:26 PM



CHAPTER 27  SETTING UP YOUR DATA WITH STRUCTURES 261

#include "c:\cprogramming files\inv.h"

main()

{

       struct invStruct item1, item2, item3;

       // Rest of program would follow…

Now you can put data into three variables. These variables are structure variables 
named item1, item2, and item3. If you wanted to define 500 structure vari-
ables, you would use an array:
#include "c:\cprogramming files\inv.h"

main()

{

       struct invStruct items[500];

       // Rest of program would follow…

Remember, the structure definition must go in the INV.H header file if you take 
this approach. Otherwise, you must place the structure definition directly inside 
the program before the structure variables, like this:
struct invStruct {

     char manuf[25]; // Manufacturer name

     char model[15]; // Model code

     int diskSpace; // Disk size in Gigabytes

     int memSpace; // Memory Space in Gigabytes

     int ports; // The number of USB ports on the system

     int quantity; // Number in inventory

     float cost; // Cost of computer

     float price; // Retail price of computer

};

main()

{

       struct invStruct items[500];

       // Rest of program would follow…

As long as the struct definition appears before main(), you can define 
invStruct structure variables throughout the rest of the program in any function 
you write. (The last part of this book explains how to write programs that contain 
more functions than main().)

28_9780789751980_ch27.indd   261 7/17/13   12:26 PM



262 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Perhaps you will need pointers to three structures instead of structure variables. 
Define them like this:
main()

{

       struct invStruct *item1, *item2,*item3;

       // Rest of program would follow

item1, item2, and item3 now can point to three structure variables. You can 
then reserve heap memory for the structures instead of using actual variables. 
(sizeof() works for structure variables to allow for heap structure data.) The 
following three statements reserve three heap structure areas and make item1, 
item2, and item3 point to those three heap values:
item1 = (struct invStruct *)malloc(sizeof(invStruct));

item2 = (struct invStruct *)malloc(sizeof(invStruct));

item3 = (struct invStruct *)malloc(sizeof(invStruct));

Putting Data in Structure Variables
A new operator, the dot operator, lets you put data in a structure variable’s indi-
vidual members. Here is the format of the dot operator:

structureVariableName.memberName

To the left of the dot is always the name of a structure variable, such as item1 or 
employee[16]. To the right of the dot operator is always the name of a member 
from that structure, such as quantity, cost, or name. The dot operator puts 
data only in named structure variables. If you want to put data in a heap struc-
ture pointed to by a structure pointer variable, you must use the structure pointer 
operator, ->.

The following program defines an array of three structure variables using a 
bookInfo structure tag shown that is defined in the bookInfo.h header file pre-
sented first. The user is asked to fill the structure variables, and then the program 
prints them. In the next couple chapters, you’ll see how to output the structure 
variables to a disk file for long-term storage.

The first file is the header file containing the structure definition:
// Example program #A from Chapter 27 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File bookinfo.h

28_9780789751980_ch27.indd   262 7/17/13   12:26 PM



CHAPTER 27  SETTING UP YOUR DATA WITH STRUCTURES 263

// This header file defines a structure for information about a book

struct bookInfo {

     char title[40];

     char author[25];

     float price;

     int pages;

};

And now the .c program file:
// Example program #1 from Chapter 27 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter27ex1.c

/* The program gets the bookInfo structure by including bookInfo.h 

and asks the user to fill in three structures and then prints them. 

*/

//First include the file with the structure definition

#include "bookinfo.h"

#include <stdio.h>

main()

{

    int ctr;

    struct bookInfo books[3]; // Array of three structure variables

    // Get the information about each book from the user

    for (ctr = 0; ctr < 3; ctr++)

    {

        printf("What is the name of the book #%d?\n", (ctr+1));

        gets(books[ctr].title);

        puts("Who is the author? ");

        gets(books[ctr].author);

        puts("How much did the book cost? ");

        scanf(" $%f", &books[ctr].price);

28_9780789751980_ch27.indd   263 7/17/13   12:26 PM



264 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

        puts("How many pages in the book? ");

        scanf(" %d", &books[ctr].pages);

getchar(); //Clears last newline for next loop

    }

    // Print a header line and then loop through and print the info

    printf("\n\nHere is the collection of books: \n");

    for (ctr = 0; ctr < 3; ctr++)

    {

        printf("#%d: %s by %s", (ctr+1), books[ctr].title,

             books[ctr].author);

        printf("\nIt is %d pages and costs $%.2f", books[ctr].pages,

             books[ctr].price);

        printf("\n\n");

    }

    return(0);

}

If you stored the structures on the heap, you couldn’t use the dot operator 
because the dot operator requires a variable name. Use -> to store data in heap 
structures. -> requires a pointer on the left and a member name on the right. 
Here is an equivalent program to the previous one, except that the heap and -> 
are used instead of structure variables and the dot operator.
// Example program #2 from Chapter 27 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter27ex2.c

/* The program again looks to fill three book structures with info, 

but it uses a pointer array this time. */

//First include the file with the structure definition

#include "bookinfo.h"

#include <stdio.h>

#include <stdlib.h>

main()

28_9780789751980_ch27.indd   264 7/17/13   12:26 PM



CHAPTER 27  SETTING UP YOUR DATA WITH STRUCTURES 265

{

    int ctr;

    struct bookInfo * books[3]; // Array of three structure variables

    // Get the information about each book from the user

    for (ctr = 0; ctr < 3; ctr++)

    {

        books[ctr] = (struct bookInfo*)malloc(sizeof

                          (struct bookInfo));

        printf("What is the name of the book #%d?\n", (ctr+1));

        gets(books[ctr]->title);

        puts("Who is the author? ");

        gets(books[ctr]->author);

        puts("How much did the book cost? ");

        scanf(" $%f", &books[ctr]->price);

        puts("How many pages in the book? ");

        scanf(" %d", &books[ctr]->pages);

        getchar(); //Clears newline input to keep things clean for 

                   // next round

    }

    // Print a header line and then loop through and print the info

    printf("\n\nHere is the collection of books: \n");

    for (ctr = 0; ctr < 3; ctr++)

    {

        printf("#%d: %s by %s", (ctr+1), books[ctr]->title,

             books[ctr]->author);

        printf("\nIt is %d pages and costs $%.2f", books[ctr]->pages,

             books[ctr]->price);

        printf("\n\n");

    }

    return(0);

}

28_9780789751980_ch27.indd   265 7/17/13   12:26 PM



266 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
This chapter’s goal was to teach you about structures. A structure is an aggregate 
variable data type. Whereas an array must hold values that are all the same data 
type, a structure can hold several values of different data types.

Before using a structure variable, you must tell C exactly what the structure looks 
like with a struct statement. The struct statement lets C know how many 
members are in the structure and the data types of each member. A structure 
variable is like a group of more than one variable of different data types. Key con-
cepts in this chapter include:

 • Define structures when you want to group items of different data types.

 • Declare a structure before defining a structure variable.

 • Use the dot operator to access individual data members within a structure 
variable.

 • Use the -> (the structure pointer operator) to access individual data members 
within a structure pointed to by a pointer variable.

 • Don’t use member names as variables. Member names exist only so you can 
work with an individual part of a structure.

 • Don’t forget to add a semicolon to the end of all structure definitions.

 • Don’t intermix the dot operator and the structure pointer operator. Remember 
that a structure variable must appear before the dot operator, and a structure 
pointer variable must appear before the -> operator.

28_9780789751980_ch27.indd   266 7/17/13   12:26 PM



SAVING SEQUENTIAL FILES 
TO YOUR COMPUTER
None of the programs you’ve seen so far has been able to store data for 

very long. Think about this for a moment: If you defined an integer vari-

able, put a 14 in it, and then turned off the computer (believe me now 

and try it later), that variable would no longer have 14 in it. If you turned 

your computer back on and tried to find the value in the variable, you 

couldn’t find it—no way.

This chapter explains how to save data to your disk. When the data is on 

your disk, it will be there until you change or erase it. Data on your disk is 

just like music on a tape. You can turn off the tape deck, and the tape will 

hold the music until you change it. There’s no good reason why a user 

should enter data, such as historical sales records, more than once.

I N  T H I S  C H A P T E R

28
• Storing information in disk files

• Opening a file

• Using sequential files

29_9780789751980_ch28.indd   267 7/17/13   12:26 PM



268 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE Files are critical to computer data programs. How use-
ful would a word processor be without files?

Disk Files
Disks hold data in files. You already understand the concept of files if you’ve saved 
a C program to a disk file. Files can hold either programs or data. Your programs 
must be loaded from disk into memory before you can run them. You also must 
load data from the disk file into variables before you can work with the data. The 
variables also hold data before the data goes to a disk file.

Two types of files exist: sequential-access files and random-access files. Their 
types determine how you can access them. If you work with a sequential-access 
file, you have to read or write the file in the order of the data. In a random-access 
file, you can jump around, reading and writing any place in the file.

TIP A sequential file is like a video tape, and a random-
access file is like a DVD or Blu-Ray. You have to watch a movie in 
sequence on a tape (or fast-forward through it in order), whereas 
you can skip to different chapters on a DVD or a Blu-Ray.

All disk files have names that conform to the same naming rules as filenames on 
your operating system. Before you can use a disk file, whether to create, read, or 
change the data in the file, you must open the file.

As with a filing cabinet, you can’t use a disk file without opening the file. Instead 
of pulling out a drawer, your computer attaches something called a file pointer to 
the file and makes sure that the disk is properly set up to hold the file you specify.

Opening a File
To open a file, you must use the fopen() function, whose description is included 
along with printf()’s in stdio.h. Before seeing fopen(), you have to under-
stand the concept of a file pointer.

NOTE The concept of a file pointer is easy to understand. 
A regular pointer holds the address of data in a variable. A file 
pointer holds the disk location of the disk file you’re working with.

You must specify a special statement to define a file pointer. As with any vari-
able, you can name file pointers anything you want. Suppose you want to open an 

29_9780789751980_ch28.indd   268 7/17/13   12:26 PM



CHAPTER 28  SAVING SEQUENTIAL FILES TO YOUR COMPUTER 269

employee file. Before the fopen(), you must define a file pointer variable. If you 
called the file pointer fptr, here is how you would define a file pointer:

FILE * fptr;  /* Defines a file pointer named fptr */

WARNING Most C programmers define their file point-
ers before main(). This makes the file pointer global, which is 
a fancy term meaning that the entire program can use the file. 
(Most other kinds of variables are local, not global.) Because part 
of the file pointer statement is in upper case, FILE is defined 
someplace with #define. FILE is defined in stdio.h, which is 
the primary reason you should include the stdio.h header file 
when your program uses the disk for data.

After you define a file pointer, you can connect that pointer to a file with 
fopen(). After you specify fopen(), you can use the file throughout the rest of 
the program. Here is the way to open a file named C:\cprograms\cdata.txt.

TIP If you don’t have a C: drive, change the C: in these exam-
ples to a different drive letter. In fact, if you want to put your files 
in a specific folder but are not sure of the path, right-click a file in 
that folder and select Properties from the menu. You should see 
the directory path of the folder, which you can then use in your 
fopen() statement.

#include <stdio.h>

FILE *fptr; // Defines a file pointer

main()

{

       fptr = fopen("c:\cprograms\cdata.txt", "w");

       // rest of program would follow

       fclose (fptr); // Always close files you've opened

For the rest of the program, you’ll access the cdata.txt file via the file pointer, 
not via the filename. Using a file pointer variable is easier and less error prone 
than typing the filename and complete pathname to the file every time you must 
access the file.

WARNING Close your filing cabinet drawers when you’re 
done with your files, or you’ll hit your head! Close all open files 
when you’re finished with them, or you could lose some data. 
fclose() is the opposite of fopen(). In its parentheses, 
fclose() requires a file pointer of the file you want to close.

29_9780789751980_ch28.indd   269 7/17/13   12:26 PM



270 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

If the file pointer equals 0, you know that an error happened. C returns a 0 from 
fopen() if an error occurs when you open a file. For example, if you attempt to 
open a file on a disk drive that doesn’t exist, fopen() returns an error.

The "w" (the second argument in the previous code’s fopen()) means write. The 
second argument of fopen() must be one of the string mode values in Table 28.1.

TABLE 28.1 The Basic fopen() Mode Strings

Mode Description

“w” Write mode that creates a new file whether it exists or not.

“r”  Read mode that lets you read an existing file. If the file doesn’t exist, you get an error.

“a”  Append mode that lets you add to the end of a file or create the file if it doesn’t 
already exist.

Using Sequential Files
You’ll do only three things with a sequential file: create it, read it, and add to it 
(write to it). To write to a file, you can use fprintf(). fprintf() is easy because 
it’s just a printf() with a file pointer at the beginning of its parentheses. The fol-
lowing program creates a file and writes some data to it using fprintf():
// Example program #1 from Chapter 28 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter28ex1.c

/* The program takes the book info program from chapter 27 and 

writes the info to a file named bookinfo.txt. */

//First include the file with the structure definition

#include "bookinfo.h"

#include <stdio.h>

#include <stdlib.h>

FILE * fptr;

main()

{

    int ctr;

    struct bookInfo books[3]; // Array of three structure variables

29_9780789751980_ch28.indd   270 7/17/13   12:26 PM



CHAPTER 28  SAVING SEQUENTIAL FILES TO YOUR COMPUTER 271

    // Get the information about each book from the user

    for (ctr = 0; ctr < 3; ctr++)

    {

        printf("What is the name of the book #%d?\n", (ctr+1));

        gets(books[ctr].title);

        puts("Who is the author? ");

        gets(books[ctr].author);

        puts("How much did the book cost? ");

        scanf(" $%f", &books[ctr].price);

        puts("How many pages in the book? ");

        scanf(" %d", &books[ctr].pages);

        getchar(); //Clears last newline for next loop

    }

    // Remember when typing your filename path to double up the

    // backslashes or C will think you are putting in a conversion

    // character

    fptr = fopen("C:\\users\\DeanWork\\Documents\\BookInfo.txt","w");

    // Test to ensure that the file opened

    if (fptr == 0)

    {

        printf("Error--file could not be opened.\n");

        exit (1);

    }

    // Print a header line and then loop through and print the info

    // to your file, but this time this printout will be in your

    // file and not on the screen.

    fprintf(fptr, "\n\nHere is the collection of books: \n");

    for (ctr = 0; ctr < 3; ctr++)

    {

29_9780789751980_ch28.indd   271 7/17/13   12:26 PM



272 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

        fprintf(fptr, "#%d: %s by %s", (ctr+1), books[ctr].title,

              books[ctr].author);

        fprintf(fptr, "\nIt is %d pages and cost $%.2f",

              books[ctr].pages, books[ctr].price);

        fprintf(fptr, "\n\n");

    }

    fclose(fptr); // Always close your files

    return(0);

}

If you ran this program and looked at the contents of the file named bookinfo.
txt (just find the file and double-click it, and Notepad should open it), you would 
see the book info you entered. Here’s what mine looked like:
Here is the collection of books:

#1: 10 Count Trivia by Dean Miller

It is 250 pages and costs $14.99

#2: Moving from C to C++ by Greg Perry

It is 600 pages and costs $39.99

#3: The Stand by Stephen King

It is 1200 pages and costs $24.99

Miller, Perry, and King—nice to see the three great authors of our time collected 
into one file! The nice thing about reusing the program from Chapter 27, “Setting 
Up Your Data with Structures,” is that it shows how easily you can adapt what 
you’ve already learned (and programs that you’ve already written) to file work. 
All this took was declaring the file pointer, opening the file (and making sure it 
opened properly), and changing the printf() statements to fprintf() state-
ments for any output you wanted to go to the file instead of the screen.

WARNING Opening a file in "w" mode overwrites an exist-
ing file with the same name. So if you run the previous program 
twice, the file will have only your data from the second run. If you 
want to build on to the file and keep the previous data, you need 
to open the file in "a" mode.

Now that you can write data to a file, how would you go about getting that informa-
tion? Use fgets() to read the contents of the file. fgets() is nothing more than a 
gets() that you can direct to a disk file. fgets() reads lines from a file into char-
acter arrays (or allocated heap memory pointed to with a character pointer).

29_9780789751980_ch28.indd   272 7/17/13   12:26 PM



CHAPTER 28  SAVING SEQUENTIAL FILES TO YOUR COMPUTER 273

TIP Think of the f at the beginning of fputs() and fgets() 
as standing for file. puts() and gets() go to the screen and key-
board, respectively; fputs() and fgets() write and read their 
data from files.

Unlike gets(), fgets() requires that you specify a maximum length for the array 
you’re reading into. You might read past the end of the file (producing an error) if 
you’re not careful, so be sure to check for the location of the end of the file.

fgets() reads one line at a time. If you specify more characters to read in the 
fgets() than actually reside on the file’s line you’re reading, fgets() stops read-
ing the line of data as long as the file’s lines end with a newline character. The pre-
vious program that created the bookinfo.txt file always wrote \n at the end of 
each line so that subsequent fgets() functions could read the file line by line.

The following program loops through a file (in this case, the bookinfo.txt cre-
ated in the last example) and prints the info on the screen.
// Example program #2 from Chapter 28 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter28ex2.c

/* The program takes the book info file from the first example of 

chapter 28; also reads each line from the file and outputs it to the 

screen. */

#include <stdio.h>

#include <stdlib.h>

FILE * fptr;

main()

{

    char fileLine[100]; // Will hold each line of input

    fptr = fopen("C:\\users\\DeanWork\\Documents\\BookInfo.txt","r");

    if (fptr != 0)

    {

        while (!feof(fptr))

        {

            fgets(fileLine, 100, fptr);

            if (!feof(fptr))

29_9780789751980_ch28.indd   273 7/17/13   12:26 PM



274 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

            {

                puts(fileLine);

            }

        }

    }

    else

    {

        printf("\nError opening file.\n");

    }

    fclose(fptr); // Always close your files

    return(0);

}

feof() returns a true condition if you just read the last line from the file. The 
feof() really isn’t needed in the previous program because we know exactly what 
the bookinfo.txt contains. (We just created the file in an earlier program.) We 
know how many lines are in the files, but you should generally use feof() when 
reading from disk files. You often don’t know exactly how much data the file con-
tains because other people using other programs might have added data to the file.

WARNING In the fprintf() function, the file pointer goes 
at the beginning of the function. In the fgets() function, the file 
pointer goes at the end. There’s nothing like consistency!

You also can use an fscanf() to read individual numeric values from a data file if 
you wrote the values with a corresponding fprintf().

You can add to a file by opening the file in append mode and outputting data to 
it. The following program adds the line More books to come! to the end of 
the book info.txt data file:
// Example program #3 from Chapter 28 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter28ex3.c

/* The program opens the existing book info file from the first 

example of chapter 28, and adds a line to the end. */

#include <stdio.h>

#include <stdlib.h>

29_9780789751980_ch28.indd   274 7/17/13   12:26 PM



CHAPTER 28  SAVING SEQUENTIAL FILES TO YOUR COMPUTER 275

FILE * fptr;

main()

{

    fptr = fopen("C:\\users\\DeanWork\\Documents\\BookInfo.txt","a");

    if (fptr == 0)

    {

        printf("Error opening the file! Sorry!\n");

        exit (1);

    }

    // Adds the line at the end

    fprintf(fptr, "\nMore books to come!\n");

    fclose(fptr); // Always close your files

    return(0);

}

Here is what MYDATA.DAT now contains (notice the extra line):
Here is the collection of books:

#1: 10 Count Trivia by Dean Miller

It is 250 pages and costs $14.99

#2: Moving from C to C++ by Greg Perry

It is 600 pages and costs $39.99

#3: The Stand by Stephen King

It is 1200 pages and costs $24.99

More books to come!

29_9780789751980_ch28.indd   275 7/17/13   12:26 PM



276 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you how to create, read, and write sequential 
files. Your C program must open a file before data can be written to or read from 
the file. When your program is done with a file, the program should close the file.

When reading from a file, you must check for the end-of-file condition to ensure 
that you don’t try to read past the end of the file. The feof() function is a built-
in C function that you use to check for the end of the file. Key concepts from this 
chapter include:

 • Store long-term data in data files.

 • Open a file with fopen() before you use the file.

 • Always close a file with fclose() when you’re done.

 • Don’t read from a file without checking for feof() because you might have 
previously read the last line in the file.

 • Don’t use the filename when you open a file. Use the file pointer that you 
connected to the file with fopen().

 • Don’t forget that the file pointer goes at the beginning of fprintf() and 
that fputs() requires a file pointer at the end of its argument list.

29_9780789751980_ch28.indd   276 7/17/13   12:26 PM



SAVING RANDOM FILES TO 
YOUR COMPUTER
This chapter shows you how to skip around in a file, reading and writing 

data as you go. The preceding chapter introduced methods you can use 

to write, read, or append data to a file. The problem is, when you open a 

sequential file for reading, you can only read it.

Sometimes you might want to read a customer structure from disk and 

change the customer’s balance. You certainly wouldn’t want to have to 

create a new file just so you could write that one change. Instead, you 

would want to read the customer information into a variable, change it, 

and then write it back to disk exactly where it first resided. As Figure 29.1 

shows, random files let you skip around in the file, reading and writing at 

any point you access.

I N  T H I S  C H A P T E R

29
• Opening random files

• Moving around in a file

30_9780789751980_ch29.indd   277 7/17/13   12:26 PM



278 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

A random file

FIGURE 29.1

Random files let you read and write data in any order.

The physical layout of a file doesn’t define the type of file (whether random or 
sequential). You can create a file sequentially and then read and change it ran-
domly. To C, a file is just a stream of bytes, and the way you access it isn’t linked 
to any format of the file.

Opening Random Files
To read or write a file randomly, you must open the file randomly. Table 29.1 lists 
the modes that access random files. As you can see, the cornerstone of random-
access files is the use of the plus sign combined with the access modes you 
learned about in the previous chapter.

TABLE 29.1 The Random-Access fopen() Modes

Mode Description

“r+” Opens an existing file for both reading and writing

“w+” Opens a new file for writing and reading

“a+”  Opens a file in append mode (the file pointer points to the end of the file), 
but lets you move back through the file, reading and writing as you go

NOTE As with sequential files, the access mode is a string 
that appears as the last argument of fopen(). You close open 
random files with fclose(), just as you do with sequential files.

All three modes let you read and write to the file. The access mode you choose 
depends on what you want to do first to the file. If the file exists and you want to 

30_9780789751980_ch29.indd   278 7/17/13   12:26 PM



CHAPTER 29  SAVING RANDOM FILES TO YOUR COMPUTER 279

access the file randomly, use the r+ mode. If you want to create the file, use w+. (If 
the file already exists, C overwrites the existing version.) If you want to add to the 
end of a file but optionally “back up” and read and write existing data, use a+.

Here is a sample fopen() statement that opens a new file for writing and reading:

fptr = fopen("C:\\Users\DeanWork\\letters.txt", "w+");

As with sequential files, the fptr variable must be a file pointer variable. The 
double backslash is needed if you specify a pathname. Remember that fopen() 
returns a zero if the open fails.

TIP You can store the filename in a character array and use 
the character array name in place of an actual string literal for the 
filename.

Moving Around in a File
Use the fseek() function to move around in a file. After you open a file, C ini-
tializes the file pointer to point to the next place in the file you can read or write. 
fseek() moves the file pointer so that you can read and write at places that 
would normally not be pointed at using sequential access. Here is the format of 
fseek():

fseek(filePtr, longVal, origin);

The filePtr is the file pointer used in the fopen() function that used a 
random-access mode. The longVal is a longint variable or literal that can be 
either positive or negative. The longVal is the number of bytes to skip forward or 
backward in the file. The origin is always one of the values shown in Table 29.2. 
origin tells fseek() where to start seeking.

TABLE 29.2 origin Values That Can Appear in fseek()

Origin Description

SEEK_SET Beginning of file

SEEK_CUR Current position in file

SEEK_END End of file

The origin value tells C the position from where you want to access the random 
file next. After you position the file pointer with fseek(), you can use file input 
and output functions to write and read to and from the file. If you position the 
file pointer at the end of the file (using SEEK_END) and then write data, new data 

30_9780789751980_ch29.indd   279 7/17/13   12:26 PM



280 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

goes to the end of the file. If you position the file pointer over existing data (using 
SEEK_SET and SEEK_CUR) and then write new data, the new data replaces the 
existing data.

WARNING Use fseek() for random-access files only. 
Sequential files can be accessed only in the order of the data.

Table 29.2’s values are in uppercase, which implies that they’re defined some-
where. They’re defined in stdio.h using #define directives.

The following program opens a file for random-access mode, writes the letters A 
through Z to the file, and then rereads those letters backward. The file doesn’t 
have to be reopened before the reading begins because of the random-access 
mode "w+".
// Example program #1 from Chapter 29 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter29ex1.c

/* The program opens a file named letters.txt and prints A through Z 

into the file

It then loops backward through the file printing each of the letters

    from Z to A. */

#include <stdio.h>

#include <stdlib.h>

FILE * fptr;

main()

{

    char letter;

    int i;

    fptr = fopen("C:\\users\\deanwork\\documents\\letters.txt", 

                 "w+");

    if (fptr == 0)

    {

        printf("There was an error while opening the file.\n");

        exit(1);

30_9780789751980_ch29.indd   280 7/17/13   12:26 PM



CHAPTER 29  SAVING RANDOM FILES TO YOUR COMPUTER 281

    }

    for (letter = 'A'; letter <= 'Z'; letter++)

    {

        fputc(letter, fptr);

    }

    puts("Just wrote the letters A through Z");

    // Now read the file backwards

    fseek(fptr, -1, SEEK_END); // Minus 1 byte from the end

    printf("Here is the file backwards:\n");

    for (i = 26; i > 0; i--)

    {

        letter = fgetc(fptr);

        // Reads a letter, then backs up 2

        fseek(fptr, -2, SEEK_CUR);

        printf("The next letter is %c.\n", letter);

    }

    fclose(fptr); // Again, always close your files

    return(0);

}

TIP As you can see, fputc() is a great function for outputting 
individual characters to a file. fgetc() reads individual characters 
from a file. fputc() and fgetc() are to putc() and getc() 
what fputs() and fgets() are to puts() and gets().

So far, you might not see a purpose for random-access files. Random access offers 
you the advantage of writing data to a file and then rereading the same data with-
out closing and opening the file. Also, fseek() lets you position the file pointer 
any number of bytes from the beginning, middle, or end of the file.

Assuming that the file of letters still resides on the disk from the last program, this 
next program asks the user which position he or she wants to change. The pro-
gram then positions the file pointer with fseek() and writes an * at that point 
before using fseek() to return to the beginning of the file and printing it again.

30_9780789751980_ch29.indd   281 7/17/13   12:26 PM



282 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

// Example program #2 from Chapter 29 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter29ex2.c

/* The program opens the file created in the first program of the 

chapter and changes one of the letters to an *. It then prints the new 

list with the altered list of letters.*/

#include <stdio.h>

#include <stdlib.h>

FILE * fptr;

main()

{

    char letter;

    int i;

    fptr = fopen("C:\\users\\deanwork\\documents\\letters.txt", "r+");

    if (fptr == 0)

    {

        printf("There was an error while opening the file.\n");

        exit(1);

    }

    printf("Which # letter would you like to change (1-26)? ");

    scanf(" %d", &i);

    // Seeks that position from the beginning of the file

    fseek(fptr, (i-1), SEEK_SET); // Subtract 1 from the position

                                  // because array starts at 0

    // Write an * over the letter in that position

    fputc('*', fptr);

    // Now jump back to the beginning of the array and print it out

30_9780789751980_ch29.indd   282 7/17/13   12:26 PM



CHAPTER 29  SAVING RANDOM FILES TO YOUR COMPUTER 283

    fseek(fptr, 0, SEEK_SET);

    printf("Here is the file now:\n");

    for (i = 0; i < 26; i++)

    {

        letter = fgetc(fptr);

        printf("The next letter is %c.\n", letter);

    }

    fclose(fptr); // Again, always close your files

    return(0);

}

The program prints the contents of the file after the * is written at the position 
indicated by the user. Here is a sample session:
The next letter is A.

The next letter is B.

The next letter is C.

The next letter is D.

The next letter is E.

The next letter is F.

The next letter is G.

The next letter is *.

The next letter is I.

The next letter is J.

The next letter is K.

The next letter is L.

The next letter is M.

The next letter is N.

The next letter is O.

The next letter is P.

The next letter is Q.

The next letter is R.

The next letter is S.

The next letter is T.

The next letter is U.

The next letter is V.

The next letter is W.

30_9780789751980_ch29.indd   283 7/17/13   12:26 PM



284 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The next letter is X.

The next letter is Y.

The next letter is Z.

As you can see, the eighth position of the alphabetical file, the letter H, now con-
tains an asterisk. The rest of the file remains unchanged.

NOTE If you ran this program a second time and changed 
a different letter (say, the 15th position of the alphabet, the O), 
your file would print with asterisks instead of H and O because the 
change to the H is now permanent in the letters.txt file. You 
could run the program 26 times and replace every letter if you 
wanted.

THE ABSOLUTE MINIMUM
The goal of this chapter was to explain how random-access files work. When you 
open a file in random-access mode, you can read and write to that file in any 
order you need to. The fseek() function is the built-in function that skips around 
the file from position to position.

Being able to change the contents of a file is important when you want to update 
file data. Often you will want to change a person’s address, change an inventory 
item’s quantity, and so on without rewriting the entire file as you would have to if 
you used sequential file processing. Key concepts from this chapter include:

 • Use a plus sign in the fopen() mode string if you need to change data in a 
file.

 • Remember that fseek() moves a file pointer all around a random file so that 
you can read or write from the beginning, middle, or end.

 • Don’t forget to close a file when you are done with it.

 • Don’t attempt to work with a file if the fopen() fails (by returning a zero).

30_9780789751980_ch29.indd   284 7/17/13   12:26 PM



ORGANIZING YOUR 
PROGRAMS WITH FUNCTIONS
Typical computer programs are not the 20- to 30-line variety that you see 

in textbooks. In the “real world,” computer programs are much longer—but 

long programs contain lots of code that can get in the way while learning new 

concepts. That’s why, until this point, you’ve seen fairly short programs that 

contain all their code in main().

If you were to put an entire long program in main(), you would spend a lot 

of time trying to find anything specific if you later needed to change it. This 

chapter is the first of three chapters that explore ways to partition your pro-

grams into sections via multiple functions. Categorizing your code by breaking 

it into sections makes programs easier to write and also easier to maintain.

People have to write, change, and fix code. The clearer you make the code by 

writing lots of functions that do individual tasks, the faster you can get home 

from your programming job and relax! As you’ll see, separate functions let 

you focus on code that needs changing.

I N  T H I S  C H A P T E R

30
• Adding functions to programs

• Choosing between global and local variables

31_9780789751980_ch30.indd   285 7/17/13   12:26 PM



286 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Form Follows C Functions
C was designed to force you to think in a modular style through the use of func-
tions. A C program isn’t just one long program. It’s made up of many routines 
named, as you know, functions. One of the program’s functions (the one always 
required and usually listed first) is named main().

If your program does a lot, break it into several functions. Each function should 
do one primary task. For instance, if you were writing a C program to assign an 
ID number to a new employee, get the person’s contact information, and then 
add him or her to the payroll, you could write all of this in one big function—all in 
main()—as the following program outline shows:
main()

{

       // Not a working program, just an outline…

…

       // First section of code that assigns an ID number to an 

       // employee

…

       // Next section of code has the user input basic contact info

…

       // Final section of code adds the employee to the payroll 

       // system 

…

       return(0);

}

This program does not offer a good format for the tasks you want accomplished 
because it’s too sequential. All the code appears in main(), even though several 
distinct tasks need to be done. This program might not require many lines of code, 
but it’s much better to get in the habit of breaking every program into distinct tasks.

NOTE Breaking programs into smaller functions is called 
structured programming.

Don’t use main() to do everything. In fact, you should use main() to do very 
little except call each of the other functions. A better way to organize this pro-
gram would be to write separate functions for each task the program is to do. Of 
course, not every function should be a single line, but make sure each function 
acts as a building block and performs only a single task.

31_9780789751980_ch30.indd   286 7/17/13   12:26 PM



CHAPTER 30  ORGANIZING YOUR PROGRAMS WITH FUNCTIONS 287

Here is a better outline for the program just described:
main()

{

       assignID(); // Sets up a unique ID for the new employee

       buildContact(); // Enters the employee's basic contact info

       payrollAdd(); // Adds the new employee to the payroll system

       return 0;

}

/* Second function, one that sets an ID for the new employee

assignID()*/

{

       // Block of C code to set up a unique ID for the

       // new employee

       return;

}

/* Next function—the contact building function */

buildContact()

{

       // Block of code to input the employee's

       // home address, phone number, birth date,

       // and so on

       return;

}

/* Fourth function to add employee to the payroll */

payrollAdd()

{

       // Code to set the new employee's salary,

       // benefits, and other info in the

       // payroll system

       return;

}

31_9780789751980_ch30.indd   287 7/17/13   12:26 PM



288 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE Even though this program outline is longer than the 
previous one, this one is better organized and, therefore, easier 
to maintain. The only thing main() does is control the other 
functions by showing an overview of how they’re called.

Each separate function does its thing and then returns to main(), where main() 
calls the next function until there are no more functions. main() then returns to 
your operating system. main() acts almost like a table of contents for the pro-
gram. With adequate comments, main() lets you know exactly what functions 
contain code you need to change.

TIP A good rule of thumb is that a function should not take 
more lines than will fit on a single screen. If the function is longer 
than that, you’re probably making it do too much. In high school, 
didn’t you hate to read literature books with l-o-n-g chapters? 
You’ll also dislike working on programs with long functions.

Any function can call any other function. For example, if you wanted 
buildContact() to print the complete contact info after it was entered, you 
might have buildContact() call another function named printContact(). 
printContact() would then return to buildContact() when it finishes. Here 
is the outline of such a code:
main()

{

       assignID(); // Sets up a unique ID for the new employee

       buildContact(); // Enters the employee's basic contact info

       payrollAdd(); // Adds the new employee to the payroll system

       return 0;

}

/* Second function, one that sets an ID for the new employee

assignID()*/

{

       // Block of C code to set up a unique ID for the

       // new employee

       return;

}

/* Next function—the contact building function */

buildContact()

31_9780789751980_ch30.indd   288 7/17/13   12:26 PM



CHAPTER 30  ORGANIZING YOUR PROGRAMS WITH FUNCTIONS 289

{

       // Block of code to input the employee's

       // home address, phone number, birth date,

       // and so on

       printContact();

       return;

}

/* Fourth function to add employee to the payroll */

payrollAdd()

{

       // Code to set the new employee's salary,

       // benefits, and other info in the

       // payroll system

       return;

}

/* Fifth function to print an entire contact onscreen */

printContact()

{

       // Code to print the contact

       return; // Returns to buildContact(), not to main()

}

NOTE Look at all the functions in the Draw Poker game in 
Appendix B, “The Draw Poker Program.” The program is only a 
few pages long, but it contains several functions. Look through 
the code and see if you can find a function that calls another func-
tion located elsewhere in the program.

The entire electronics industry has learned something from the programming 
world. Most electronic components today, such as televisions, computers, and 
phones, contain a lot of boards that can be removed, updated, and replaced 
without affecting the rest of the system. In a similar way, you’ll be able to change 
certain workings of your programs: If you write well-structured programs by using 
functions, you can then change only the functions that need changing without hav-
ing to mess with a lot of unrelated code.

31_9780789751980_ch30.indd   289 7/17/13   12:26 PM



290 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Local or Global?
The program outline explained in the preceding section needs more code to 
work. Before being able to add code, you need to take a closer look at variable 
definitions. In C, all variables can be either local or global. All the variables you 
have seen so far have been local. Most of the time, a local variable is safer than 
a global variable because a local variable offers itself on a need-to-know access. 
That is, if a function needs a variable, it can have access to another function’s local 
variables through a variable-passing process described in the next chapter.

If a function doesn’t need to access another function’s local variable, it can’t have 
access. Any function can read, change, and zero out global variables, so they 
don’t offer as much safety.

The following rules describe the difference between local and global variables:

 • A variable is global only if you define the variable (such as inti;) before a 
function name.

 • A variable is local only if you define it after an opening brace. A function always 
begins with opening braces. Some statements, such as while, also have 
opening braces, and you can define local variables within those braces as well.

TIP An opening and closing brace enclose what is known as a 
block.

Given these rules, it should be obvious that l1 and l2 are local variables and that 
g1 and g2 are global variables in the following program:
// Example program #1 from Chapter 30 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter30ex1.c

/* The program is a simple demonstration of the difference between 

global variables and local variables. */

#include <stdio.h>

int g1 = 10;

main()

{

    float l1;

31_9780789751980_ch30.indd   290 7/17/13   12:26 PM



CHAPTER 30  ORGANIZING YOUR PROGRAMS WITH FUNCTIONS 291

    l1 = 9.0;

    printf("%d %.2f\n", g1, l1); // prints the 1st global and first

                                 // local variable

    prAgain(); // calls our first function

    return 0;

}

float g2 = 19.0;

prAgain()

{

    int l2 = 5;

    // Can't print l1--it is local to main 

    printf("%d %.2f %d\n", l2, g2, g1);

    return;

}

TIP You might not yet completely understand the return 0; 
statement. To make matters worse, return by itself is used at 
the end of the prAgain() function. You’ll find a detailed descrip-
tion for return in the next two chapters.

The variable g2 is global because it’s defined before a function (prAgain()).

Local variables are usable only within their own block of code. Therefore, l1 
could never be printed or changed in prAgain() because l1 is local to main(). 
Conversely, l2 could never be used in main() because l2 is visible only to 
prAgain(). The variable g1 is visible to the entire program. g2 is visible only 
from its point of definition down.

TIP All global variables are known from their points of defini-
tion down in the source file. Don’t define a global variable in 
the middle of a program (as is done in the preceding program) 
because its definition can be too hard to find during debugging 
sessions. You should limit (or eliminate) the use of globals. If you 
use them at all, define all of them before main(), where they are 
easy to find (such as if you need to change them or look at their 
defined data types).

31_9780789751980_ch30.indd   291 7/17/13   12:26 PM



292 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The program outline shown earlier has a problem. If you use only local variables 
(and you should always try to), the user ID created in assignID() cannot be used 
in buildContact() or addPayroll(). Stay tuned—the next chapter shows you 
the solution.

WARNING If you compile the previous program and receive 
a compiler warning about a call to a function without a prototype, 
ignore the warning for now. Chapter 32, “Returning Data from 
Your Functions,” answers your questions.

THE ABSOLUTE MINIMUM
The goal of this chapter was to teach you the building-block approach to writing 
C programs. Long programs can become unwieldy unless you break them into 
several separate functions. One long main() function is analogous to a long book 
without chapter divisions. Break your long programs into separate functions, and 
have each function perform a single, separate task in the program.

When you divide your programs into several functions, you have to consider how 
variables are used throughout the code. Local variables are defined inside a func-
tion and are usable only in that function. The opposite of a local variable is a 
global variable, whose value is usable in all functions after its definition. Global 
variables are frowned upon. Local variables are safer because you can limit their 
access to only functions that need to use them. In the next chapter, you learn how 
to share local variables between functions. Key concepts from this chapter include:

 • Define local variables after a block’s opening brace. Define global variables 
before a function begins.

 • Local variables are safer than global variables, so use local variables as much 
as possible.

 • Break your programs into lots of functions to ease maintenance and speed 
development time.

 • Don’t define global variables in the middle of a program. They’re too hard to 
locate if you do.

 • Don’t start out using global variables. As your program grows, you might 
occasionally  see the need for a global variable—add one then. (The next 
chapter talks more about using local variables in place of globals.)

31_9780789751980_ch30.indd   292 7/17/13   12:26 PM



PASSING VARIABLES TO 
YOUR FUNCTIONS
The preceding chapter left some questions unanswered. If multiple func-

tions are good (they are), and if local variables are good (they are), then 

you must have a way to share local variables between functions that need 

to share them (there is a way). You don’t want all functions to have access 

to all variables because not every function needs access to every variable. 

If full variable access between functions is needed, you might as well use 

global variables.

To share data from function to function, you must pass variables from 

function to function. When one function passes a variable to another 

function, only those two functions have access to the variable (assum-

ing that the variable is local). This chapter explains how to pass variables 

between functions.

I N  T H I S  C H A P T E R

31
• Passing arguments to functions

• Differentiating between passing by value and 
passing by address

32_9780789751980_ch31.indd   293 7/17/13   12:25 PM



294 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Passing Arguments
When you pass a variable from one function to another, you are passing an argu-
ment from the first function to the next. You can pass more than one variable at 
a time. The receiving function receives the parameters from the function that sent 
the variables.

WARNING The words variable, argument, and parameter 
are sometimes used interchangeably when passing and receiving 
values. The name is not as important as understanding what is 
happening. Figure 31.1 helps explain these terms.

Calling
function that sends
one or more variables
(called arguments) to
the receiving function

Receiving function that
receives the variables (called
parameters in this function)
from the calling function

From here...
...to here

Local variables 

FIGURE 31.1

Getting the terms correct.

Methods of Passing Arguments
You pass arguments from a function to another function in two ways: by value and 
by address. Both of these methods pass arguments to a receiving function from a 
calling function. There is also a way to return a value from a function back to the 
calling function (see the next chapter).

All this talk of passing values focuses on the parentheses that follow function 
names. That’s right, those empty parentheses have a use after all! The variables 
you want to pass go inside the parentheses of the function call and also in the 
receiving function, as you’ll see in the next section.

NOTE Yes, this passing values stuff is important! It’s easy, 
though, as you’ll see.

32_9780789751980_ch31.indd   294 7/17/13   12:25 PM



CHAPTER 31  PASSING VARIABLES TO YOUR FUNCTIONS 295

Passing by Value
Sometimes passing by value is called passing by copy. You’ll hear these terms 
used interchangeably because they mean the same thing. Passing by value means 
that the value of the variable is passed to the receiving function, not the variable 
itself. Here is a program that passes a value from main() to half():
// Example program #1 from Chapter 31 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter31ex1.c

/* The program demonstrates passing a variable to a function by 

value. */

#include <stdio.h>

main()

{

    int i;

    printf("Please enter an integer... ");

    scanf(" %d", &i);

    // Now call the half function, passing the value of i

    half(i);

    // Shows that the function did not alter i's value

    printf("In main(), i is still %d.\n", i);

    return(0); // Ends the program

}

/******************************************************************/

/* Sometimes putting dividers like the one above is a nice break

    between your different functions. */

half (int i)  // Recieves the value of i

32_9780789751980_ch31.indd   295 7/17/13   12:25 PM



296 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

{

    i = i / 2;

    printf("Your value halved is %d.\n", i);

    return; // Returns to main

}

Here is a sample of the program’s output:
Please enter an integer… 28

Your value halved is 14.

In main(), i is still 28.

Study this first line of the half() function:

half(int i)  /* Receives value of i */

Notice that you must put the data type (int) inside the receiving function’s 
parameter list. As Figure 31.2 shows, the contents of i are passed to half(). The 
i in main() is never changed because only a copy of its value is passed.

main( )

{

   int i;

   /* Prompt and input code go here*/

   half(i);

   return 0;

}

half(int i)

{

   i = i / 2

   printf( /*Rest of printf()*/

   return;

}

value of i

FIGURE 31.2

The value of i is passed, not the variable i.

If you passed more than one variable separated by commas, all would have to 
have their data types listed as well, even if they were all the same type. Here is a 
function that receives three variables: a floating point, a character array, and an 
integer:

aFun(float x, char name[15], int age)  /* Receives three arguments */

32_9780789751980_ch31.indd   296 7/17/13   12:25 PM



CHAPTER 31  PASSING VARIABLES TO YOUR FUNCTIONS 297

WARNING Passing by value protects a variable. If the 
receiving function changes a passed-by-value variable, the calling 
function’s variable is left unchanged. Therefore, passing by value 
is always safe because the receiving function can’t change the 
passing function’s variables—it can only use them.

If the previous program’s receiving function called its parameter i2, the program 
would still work the way it does now. The i2 would be local to half(), whereas 
the i in main() would be local to main(). The i2 would be local to the half() 
function and distinct from main().

C uses the passing by value method for all non-array variables. Therefore, if you 
pass any variable that is not an array to a function, only a copy of that variable’s 
value is passed. The variable is left unchanged in the calling function, no matter 
what the called function does with the value.

Passing by Address
When you pass an array to another function, the array is passed by address. 
Instead of a copy of the array being passed, the memory address of the array is 
passed. The receiving function then places its receiving parameter array over the 
address passed. The bottom line is that the receiving function works with the same 
address as the calling function. If the receiving function changes one of the vari-
ables in the parameter list, the calling function’s argument changes as well.

The following program passes an array to a function. The function puts X through-
out the array, and then main() prints the array. Notice that main() prints all Xs 
because the function changed the argument.
// Example program #2 from Chapter 31 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter31ex2.c

/* The program demonstrates passing an array to a function. */

#include <stdio.h>

#include <string.h>

main()

{

    char name[15] = "Michael Hatton";

    change(name);

32_9780789751980_ch31.indd   297 7/17/13   12:25 PM



298 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    printf("Back in main(), the name is now %s.\n", name);

    return(0); // Ends the program

}

/******************************************************************/

/* Sometimes putting dividers like the one above is a nice break

    between your different functions. */

change(char name[15])  // Recieves the value of i

{

    // Change the string stored at the address pointed to by name

    strcpy(name, "XXXXXXXXXXXXXX");

    return; // Returns to main

}

This program produces the following output:

Back in main(), the name is now XXXXXXXXXXXXXX.

If you want to override the passing of non-arrays by value, you can force C to pass 
regular non-array variables by address. However, doing so looks really crazy! Here 
is a program, similar to the first one you saw in this chapter, that produces a differ-
ent output:
// Example program #3 from Chapter 31 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter31ex3.c

/* The program demonstrates passing a variable to a function by 

address. */

#include <stdio.h>

main()

{

32_9780789751980_ch31.indd   298 7/18/13   8:37 AM



CHAPTER 31  PASSING VARIABLES TO YOUR FUNCTIONS 299

    int i;

    printf("Please enter an integer... ");

    scanf(" %d", &i);

    // Now call the half function, passing the address of i

    half(&i);

    // Shows that the function did alter i's value

    printf("In main(), i is now %d.\n", i);

    return(0); // Ends the program

}

/******************************************************************/

/* Sometimes putting dividers like the one above is a nice break

    between your different functions. */

half (int *i)  // Receives the address of i

{

    *i = *i / 2;

    printf("Your value halved is %d.\n", *i);

    return; // Returns to main

}

Here is the output from the program:
Please enter an integer… 28

Your value halved is 14.

In main(), i is now 14.

It looks strange, but if you want to pass a non-array by address, precede it in the 
passing function with an & (address-of) symbol and then put a * (dereferencing) 
symbol in front of the variable everywhere it appears in the receiving function. If 
you think you’re now passing a pointer to a function, you’re exactly right.

32_9780789751980_ch31.indd   299 7/17/13   12:25 PM



300 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE Now scanf() is not so unfamiliar. Remember that 
you put an & before non-array variables but not before array vari-
ables that you pass to scanf(). When you call scanf(), you 
must pass it the address of variables so that scanf() can change 
the variables. Because strings are arrays, when you get a string 
from the keyboard, you don’t put an address-of operator before 
the array name.

Here is a program that passes an integer i by value, a floating-point x by address, 
and an integer array by address (as all arrays should be passed):
// Example program #4 from Chapter 31 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter31ex4.c

/* The program demonstrates passing multiple variables to a 

function. */

#include <stdio.h>

// The following statement will be explained in Chapter 32

changeSome(int i, float *newX, int iAry[5]);

main()

{

    int i = 10;

    int ctr;

    float x = 20.5;

    int iAry[] = {10, 20, 30, 40, 50};

    puts("Here are main()'s variables before the function:");

    printf("i is %d\n", i);

    printf("x is %.1f\n", x);

    for (ctr = 0; ctr < 5; ctr++)

    {

        printf("iAry[%d] is %d\n", ctr, iAry[ctr]);

    }

32_9780789751980_ch31.indd   300 7/18/13   8:37 AM



CHAPTER 31  PASSING VARIABLES TO YOUR FUNCTIONS 301

    // Now call the changeSome function, passing the value of i

    // and the address of x (hence, the &)

    changeSome(i, &x, iAry);

    puts("\n\nHere are main()'s variables after the function:");

    printf("i is %d\n", i);

    printf("x is %.1f\n", x);

    for (ctr = 0; ctr < 5; ctr++)

    {

        printf("iAry[%d] is %d\n", ctr, iAry[ctr]);

    }

    return(0); // Ends the program

}

/******************************************************************/

changeSome (int i, float *newX, int iAry[5])

{

    // All variables are changes, but only the float and array

    // remain changed when the program returns to main()

    // changed when the program returns to main()

    int j;

    i = 47;

    *newX = 97.6; // Same location as x in main

    for (j = 0; j < 5; j++)

    {

        iAry[j] = 100 + 100*j;

    }

    return; // Returns to main

}

32_9780789751980_ch31.indd   301 7/17/13   12:25 PM



302 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Here is the output from the program:
Here are main()'s variables before the function:

i is 10

x is 20.5

iAry[0] is 10

iAry[1] is 20

iAry[2] is 30

iAry[3] is 40

iAry[4] is 50

Here are main()'s variables after the function:

i is 10

x is 97.6

iAry[0] is 100

iAry[1] is 200

iAry[2] is 300

iAry[3] is 400

iAry[4] is 500

The next chapter finishes with the passing of values between functions by show-
ing you how to return a value from one function to another. Also, you will finally 
understand the true use of stdio.h.

32_9780789751980_ch31.indd   302 7/17/13   12:25 PM



CHAPTER 31  PASSING VARIABLES TO YOUR FUNCTIONS 303

THE ABSOLUTE MINIMUM
The goal of this chapter was to show you how to share local variables between 
functions. When one function needs access to a local variable defined in another 
function, you must pass that variable. The parentheses after function names con-
tain the variables you’re passing and receiving.

Normally, you pass non-array variables by value, which means that the receiving 
function can use them but not affect their values in the calling function. Arrays are 
passed by address, which means that if the receiving function changes them, the 
array variables are also changed in the calling function. You can pass non-array 
variables by address by preceding them with the address-of operator, &, and 
receiving them with the dereference operator, *. Key concepts from this chapter 
include:

 • Pass local variables from one function to another if you want the functions to 
share local variables.

 • Pass variables by value if you want their values protected from the called 
function.

 • Pass variables by address if you want their values changed by the called 
function.

 • Place an & before non-array variables you want to pass by address. Leave off 
the & if you want to pass arrays.

 • Don’t pass an array variable by value; C has no way to do that.

32_9780789751980_ch31.indd   303 7/17/13   12:25 PM



This page intentionally left blank 



RETURNING DATA FROM 
YOUR FUNCTIONS
This chapter isn’t the end of your C learning—it’s only the beginning. 

Sounds deep, doesn’t it? This chapter completes the multiple-function pic-

ture by showing you how to return values from the called function to the 

calling function. It also explains function prototypes.

The bottom line is this: You will now understand why most programs in this 

book contain this line:

return 0;

You also will understand the true purpose of header files.

I N  T H I S  C H A P T E R

32
• Returning values

• Using the return data type

33_9780789751980_ch32.indd   305 7/17/13   12:25 PM



306 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Returning Values
So far, you’ve seen how to send variables to functions. You’re now ready to learn 
how to return a value. When a function is to return a value, use the return state-
ment to return the value. C programmers often put parentheses after the return 
statement, with the return value inside those parentheses, such as return 
(answer);.

NOTE If a function doesn’t return a value, a return state-
ment isn’t needed because the function will return to the calling 
function automatically. Nevertheless, if you need to return a value, 
a return statement is required.

Although you can pass several arguments to functions, you can return only one 
value to the calling function. Figure 32.1 explains what is going on. This rule has 
no exceptions.

Calling function

:
:

ans=callIt[i, j, k];
:
:

callIt[int i, int j, int k]
:
:

return [i*j*k];           

Receiving function

Three
passed

One
returned

FIGURE 32.1

You can pass more than one value but return only one.

Although a single return value might seem limiting, it really isn’t. Consider the 
built-in sqrt()function. You might remember from Chapter 20, “Advanced Math 
(For the Computer, Not You!),” that sqrt() returns the square root of whatever 
value is passed to it. sqrt() doesn’t return several values—only one. As a matter 
of fact, none of the built-in functions returns more than a single value, and neither 
can yours.

33_9780789751980_ch32.indd   306 7/17/13   12:25 PM



CHAPTER 32  RETURNING DATA FROM YOUR FUNCTIONS 307

NOTE The gets()function seems as if it returns more than 
one value because it returns a character string array. Remember, 
though, that an array name is nothing more than a pointer to the 
array’s first position. Therefore, gets() actually returns a char-
acter pointer that points to the beginning of the string the user 
entered.

The following program contains a function that receives three floating-point val-
ues: test1, test2, and test3. The function named gradeAve() calculates the 
average of those three grades and then returns the answer.
// Example program #1 from Chapter 32 of Absolute Beginner's Guide 

// to C, 3rd Edition

// File Chapter32ex1.c

/* The program demonstrates functions returning a value by passing 

three floating-point numbers (grades) and calculating the average of 

the three. */

#include <stdio.h>

float gradeAve(float test1, float test2, float test3);

main()

{

    float grade1, grade2, grade3;

    float average;

    printf("What was the grade on the first test? ");

    scanf(" %f", &grade1);

    printf("What was the grade on the second test? ");

    scanf(" %f", &grade2);

    printf("What was the grade on the third test? ");

    scanf(" %f", &grade3);

    //Pass the three grades to the function and return the average

    average = gradeAve(grade1, grade2, grade3);

33_9780789751980_ch32.indd   307 7/17/13   12:25 PM



308 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    printf("\nWith those three test scores, the average is %.2f", 

           average);

    return 0;

}

/******************************************************************/

float gradeAve(float test1, float test2, float test3)  

// Receives the values of three grades

{

    float localAverage;

    localAverage = (test1+test2+test3)/3;

    return (localAverage); // Returns the average to main

}

Here is sample output from this program:
What was the grade on the first test? 95

What was the grade on the second test? 88

What was the grade on the third test? 91

With those three test scores, the average is 91.33.

NOTE Notice that main() assigned the gradeAve() return 
value to average. main() had to do something with the value 
that was returned from gradeAve().

You can put an expression after return as well as variables. This:
sales = quantity * price;

return (sales);

is identical to this:

return (quantity * price);

33_9780789751980_ch32.indd   308 7/17/13   12:25 PM



CHAPTER 32  RETURNING DATA FROM YOUR FUNCTIONS 309

The return Data Type
At the beginning of the gradeAve() function, you see float. float is the data 
type of the returned value localAverage. You must put the return data type 
before any function name that returns a value. If the function returned a long 
int, long int would have to precede the function name.

If you don’t specify a return data type, C assumes int. Therefore, C expects that 
every function without a return data type specified explicitly will return int. Both 
of these functions’ first lines mean exactly the same thing to C:

int myFun(int a, float x, char c)

and

myFun(int a, float x, char c)  /* int is assumed */

TIP Guess what? Even main() is assumed to return an int value 
unless you specify an overriding return data type. That is why you’ve 
seen return 0; at the end of most of these programs! Because 
main() has no specified return data type, int is assumed, and the 
return 0; ensures that an int is returned to your operating system.

If your function doesn’t return a value, or if your function isn’t passed a value, you 
can insert the keyword void for either the return data type or the parameter list or 
both. Therefore, the first line of a function that neither gets any value nor returns 
any value might look like this:

void doSomething(void)  /* Neither is passed nor returns */

WARNING main() can’t be of type void if you use strict 
American National Standards Institute (ANSI) C. It must be of 
type int. (However, most compilers—even those that promote 
themselves as ANSI C-compatible—enable you to specify void as 
main()’s return type.)

One Last Step: Prototype
Making a function work properly involves one last step. If a function returns any 
value other than int, you should prototype that function. Actually, you should 
prototype functions that return integers as well for clarity.

The word prototype means a model of something else. A prototype of a func-
tion is just a model of the actual function. At first, a C prototype seems like a total 
waste of time.

33_9780789751980_ch32.indd   309 7/17/13   12:25 PM



310 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

The reason functions that return int values don’t need prototypes is that int is 
the default prototyped return value unless you specify a different return value. 
Therefore, these two prototypes both model the same function: 

int aFunc(int x, float y);  /* 2 passed, one integer returned */

and

aFunc(int x, float y);  /* 2 passed, one integer returned */

Prototypes aren’t required if you don’t return a value or if you return an inte-
ger value, but they are strongly recommended. When you prototype, C ensures 
that you don’t pass a float value to a function that expects to receive a char. 
Without the prototype, C tries to convert the float to a char, and a bad value is 
passed as a result.

To prototype a function, place an exact duplicate of the function’s first line some-
where before main(). The prototype for gradeAve() appears right before 
main() in the program you saw earlier. The line is not a function call because it 
appears before main(). The line is not a function’s actual first line because of the 
semicolon that follows all prototypes. The line is a function prototype. If your pro-
gram calls 20 functions, you should have 20 prototypes.

Prototype every function in your programs—every function called by your code 
and even the built-in functions such as printf(). “Huh?” might be a good ques-
tion at this point. You might wonder how you can prototype printf() when you 
didn’t write it to begin with. The file stdio.h contains a prototype for printf(), 
scanf(), getchar(), and many other input and output functions. The prototype 
for strcpy() appears in string.h. You should find out the name of the header 
file when you learn a new built-in function so that you can use the #include 
directive to add the file to your program and make sure that each function is pro-
totyped.

TIP main() needs no prototype as long as you place main() 
as the first function in the program. main() is known as a self-
prototyping function because no other functions call main() 
before it appears in the code.

The following program does not work correctly because the float return type is 
not prototyped correctly. Remember, C assumes that an int is returned (even if 
you return a different data type) unless you override the return type in the proto-
type.

33_9780789751980_ch32.indd   310 7/17/13   12:25 PM



CHAPTER 32  RETURNING DATA FROM YOUR FUNCTIONS 311

#include <stdio.h>

compNet(float atomWeight, float factor);

main()

{

       float atomWeight, factor, netWeight;

       printf("What is the atomic weight? ");

       scanf(" %f", &atomWeight);

       printf("What is the factor? ");

       scanf(" %f", &factor);

       netWeight = compNet(atomWeight, factor);

       printf("The net weight is %.4f\n", netWeight);

       return 0;

}

/************************************************************/

compNet(float atomWeight, float factor)

{

       float netWeight;

       netWeight = (atomWeight – factor) * .8;

       return(netWeight);

}

This shows the incorrect output:
What is the atomic weight? .0125

What is the factor? .98

The net weight is 0.0000

To fix the problem, you have to change the prototype to this:

float compNet(float atomWeight, float factor);

You also have to change the compNet()’s definition line (its first line) to match 
the prototype:

float compNet(float atomWeight, float factor)

33_9780789751980_ch32.indd   311 7/17/13   12:25 PM



312 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

Wrapping Things Up
Never pass or return a global variable if you use one. Global variables don’t have 
to be passed. Also, the parameter lists in the calling function, receiving function, 
and prototype should match in both numbers and data types. (The names of the 
values don’t have to match.)

You now know everything there is to know about passing parameters and returning 
values. Put on your official programmer’s thinking cap and start your C compiler!

THE ABSOLUTE MINIMUM
The goal of this chapter was to round out your knowledge of functions by explain-
ing prototypes and return values. When your program contains a lot of functions, 
prototype those functions somewhere before main(). The prototypes tell C what 
to expect. After you prototype, you can pass and return variables of any data type. 
(You can return ints only if you don’t prototype.)

The prototype ensures that you don’t inadvertently pass the wrong data types to 
functions. For example, if the prototype states that you’ll pass two float values 
to a function, but you accidentally pass two int variables, C complains. C doesn’t 
complain if you don’t prototype, and you might get wrong results because of it.

Now that you know how to return values, you can write functions that mirror those 
that are built in, such as sqrt() and rand(). When you call a function, that function 
returns a value based on the function’s code. A function can return a maximum of 
one value, just like functions that are built in. Key concepts from this chapter include:

 • Place the return data type before a function name that returns a value.

 • The return value appears after a return statement.

 • In the calling function, do something with the return value. Print it or assign 
it to something. Calling a function that returns a value is useless if you do 
nothing with the return value.

 • Use void as the return data type or in the parameter list if you neither return 
nor pass values to a function.

 • Don’t return more than one value from a function.

 • Don’t return a non-integer without a prototype. Better yet, prototype all 
functions except main().

33_9780789751980_ch32.indd   312 7/17/13   12:25 PM



The ASCII Table

A

0 00 null

1 01 A

2 02 B

3 03 C

4 04 D

5 05 E

6 06 F

7 07 G

8 08 H

9 09 I

10 0A J

11 0B K

12 0C L

13 0D M

14 0E N

15 0F O

16 10 P

17 11 Q

18 12 R

19 13 S

20 14 T

21 15 U

22 16 V

23 17 W

24 18 X

25 19 Y

26 1A Z

27 1B a

 Dec Hex ASCII Dec Hex ASCII

34_9780789751980_appa.indd   313 7/17/13   12:25 PM



314 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

 Dec Hex ASCII Dec Hex ASCII

59 3B ;

60 3C <

61 3D =

62 3E >

63 3F ?

64 40 @

65 41 A

66 42 B

67 43 C

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J

75 4B K

76 4C L

77 4D M

78 4E N

79 4F O

80 50 P

81 51 Q

82 52 R

83 53 S

84 54 T

85 55 U

86 56 V

87 57 W

88 58 X

89 59 Y

28 1C b

29 1D c

30 1E d

31 1F e

32 20 space

33 21 !

34 22 “

35 23 #

36 24 $

37 25 %

38 26 &

39 27 ‘

40 28 (

41 29 )

42 2A *

43 2B +

44 2C ‘

45 2D -

46 2E .

47 2F /

48 30 0

49 31 1

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

58 3A :

 Dec Hex ASCII Dec Hex ASCII

34_9780789751980_appa.indd   314 7/17/13   12:25 PM



APPENDIX A  THE ASCII TABLE 315

 Dec Hex ASCII Dec Hex ASCII

121 79 y

122 7A z

123 7B {

124 7C |

125 7D }

126 7E ~

127 7F f

128 80 Ç

129 81 ü

130 82 é

131 83 â

132 84 ä

133 85 à

134 86 å

135 87 ç

136 88 ê

137 89 ë

138 8A è

139 8B ï

140 8C î

141 8D ì

142 8E Ä

143 8F Å

144 90 É

145 91 æ

146 92 Æ

147 93 ô

148 94 ö

149 95 ò

150 96 û

151 97 ù

90 5A Z

91 5B [

92 5C \

93 5D ]

94 5E ^

95 5F –

96 60 `

97 61 a

98 62 b

99 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

34_9780789751980_appa.indd   315 7/17/13   12:25 PM



316 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

 Dec Hex ASCII Dec Hex ASCII

181 B5 µ

182 B6 ∂

183 B7 ∑

184 B8 ∏

185 B9 π

186 BA ∫

187 BB ª

188 BC º

189 BD Ω

190 BE æ

191 BF ø

192 C0 ¿

193 C1 ¡

194 C2 ¬

195 C3 √

196 C4 ƒ

197 C5 +

198 C6 ∆

199 C7 «

200 C8 »

201 C9 …

202 CA g

203 CB À

204 CC Ã

205 CD =

206 CE Œ

207 CF œ

208 D0 –

209 D1 —

152 98 ÿ

153 99 Ö

154 9A Ü

155 9B ¢

156 9C £

157 9D ¥

158 9E û

159 9F ƒ

160 A0 á

161 A1 í

162 A2 ó

163 A3 ú

164 A4 ñ

165 A5 —

166 A6 ¶

167 A7 ß

168 A8 ®

169 A9 ©

170 AA ™

171 AB ´

172 AC ¨

173 AD ≠

174 AE Æ

175 AF Ø

176 B0 Ð

177 B1 Ð

178 B2 Ð

179 B3 ≥

180 B4 ¥

34_9780789751980_appa.indd   316 7/17/13   12:25 PM



APPENDIX A  THE ASCII TABLE 317

 Dec Hex ASCII Dec Hex ASCII

239 EF Ô

240 F0 è

241 F1 Ò

242 F2 Ú

243 F3 Û

244 F4 Ù

245 F5 ı

246 F6 ˆ

247 F7 ˜

248 F8 ¯

249 F9 ˘

250 FA ˙

251 FB ˚

252 FC ¸

253 FD ˝

254 FE ˛

255 FF 

210 D2 “

211 D3 ”

212 D4 ‘

213 D5 ’

214 D6 ÷

215 D7 ◊

216 D8 ÿ

217 D9 Ÿ

218 DA ⁄

219 DB Ð

220 DC ‹

221 DD ›

222 DE fi

223 DF fl

224 E0 ‡

225 E1 ·

226 E2 ‚

227 E3 „

228 E4 ‰

229 E5 Â

230 E6 Ê

231 E7 Á

232 E8 Ë

233 E9 È

234 EA Í

235 EB Î

236 EC Ï

237 ED h

238 EE Ó

34_9780789751980_appa.indd   317 7/17/13   12:25 PM



This page intentionally left blank 



THE DRAW POKER 
PROGRAM
Programming is not all work and no play, and the following Draw Poker 

game proves it! The game program provides a long example that you can 

study as you master C. Although the game is simple and straightforward, a 

lot happens in this program.

As with all well-written programs, this one is commented thoroughly. In 

fact, if you have read each chapter of this book, you will understand the 

programming of Draw Poker. One of the reasons the program is kept sim-

ple is to keep it compiler-independent. For your program, you might want 

to find out how your C compiler produces colors onscreen so that you can 

add pizazz to the game’s display. Also, when you master enough of C to 

understand the program’s inner workings, you’ll want to explore graphics 

capabilities and actually draw the cards.

B

35_9780789751980_appb.indd   319 7/17/13   12:25 PM



320 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

NOTE You can also experiment with changes to the program. 
For example, most draw poker programs pay out on a pair only if 
it is Jacks or better (that is, only a pair of Jacks, Queens, Kings, or 
Aces). How would you have to alter the analyzeHand() function 
to make that change?

// Example poker program from Appendix B of Absolute Beginner's 

// Guide to C, 3rd Edition

// File AppendixBpoker.c

/* This program plays draw poker. Users can play as often as they 

want, betting between 1 and 5. They are dealt 5 cards and then get 

to choose which cards to keep, and which cards to replace. The new 

hand is then reviewed and the user's payout is set based on the 

value of the hand. The user's new bankroll is displayed as they are 

given

    the option to continue. */

   

// Header files

   

#include <stdio.h>

#include <time.h>

#include <ctype.h>

#include <stdlib.h>

// Two constants defined for determining whether hands are flushes 

// or straights

#define FALSE 0

#define TRUE 1

// Function prototyping

void printGreeting();

int getBet();

char getSuit(int suit);

char getRank(int rank);

void getFirstHand(int cardRank[], int cardSuit[]);

35_9780789751980_appb.indd   320 7/17/13   12:25 PM



APPENDIX B  THE DRAW POKER PROGRAM 321

void getFinalHand(int cardRank[], int cardSuit[], int finalRank[],

             int finalSuit[], int ranksinHand[],

             int suitsinHand[]);

int analyzeHand(int ranksinHand[], int suitsinHand[]);

main()

{

    int bet;

    int bank = 100;

    int i;

    int cardRank[5]; // Will be one of 13 values (Ace-King)

    int cardSuit[5]; // Will be one of 4 values (for Clubs, Diamonds, 

                     // Hearts, Spades)

    int finalRank[5];

    int finalSuit[5];

    int ranksinHand[13]; // Used for evaluating the final hand

    int suitsinHand[4]; // Used for evaluating the final hand

    int winnings;

    time_t t;

    char suit, rank, stillPlay;

    // This function is called outside the do...while loop because 

    // the greeting

    // only needs to be displayed once, while everything else in main 

    // will run

    // multiple times, depending on how many times the user wants to 

    // play.

   

    printGreeting();

    // Loop runs each time the user plays a hand of draw poker

   

    do {

        bet = getBet();

35_9780789751980_appb.indd   321 7/17/13   12:25 PM



322 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

        srand(time(&t));

        getFirstHand(cardRank, cardSuit);

        printf("Your five cards: \n");

        for (i = 0; i < 5; i++)

        {

            suit = getSuit(cardSuit[i]);

            rank = getRank(cardRank[i]);

            printf("Card #%d: %c%c\n", i+1, rank, suit);

        }

    // These two arrays are used to figure out the value of

    // the player's hand. However, they must be zeroed out

    // in case the user plays multiple hands.

    for (i=0; i < 4; i++)

    {

        suitsinHand[i] = 0;

    }

    for (i=0; i < 13; i++)

    {

        ranksinHand[i] = 0;

    }

   

    getFinalHand(cardRank, cardSuit, finalRank, finalSuit,

                           ranksinHand, suitsinHand);

   

    printf("Your five final cards: \n");

    for (i = 0; i < 5; i++)

    {

        suit = getSuit(finalSuit[i]);

        rank = getRank(finalRank[i]);

        printf("Card #%d: %c%c\n", i+1, rank, suit);

    }

35_9780789751980_appb.indd   322 7/17/13   12:25 PM



APPENDIX B  THE DRAW POKER PROGRAM 323

        winnings = analyzeHand(ranksinHand,suitsinHand);

        printf("You won %d!\n", bet*winnings);

        bank = bank - bet + (bet*winnings);

        printf("\nYour bank is now %d.\n", bank);

        printf("\nDo you want to play again? ");

        scanf(" %c", &stillPlay);

    } while (toupper(stillPlay) == 'Y');

    return;

}

/******************************************************************/

// Print a quick greeting as well as tell the users the value of 

// different winning hands

void printGreeting()

{

    printf("***************************************************\n");

    printf("\n\n\tWelcome to the Absolute Beginner's Casino\n\n");

    printf("\tHome of Video Draw Poker\n\n");

    printf("***************************************************\n");

    printf("Here are the rules:\n");

    printf("You start with 100 credits, and you make a bet from ");

    printf("1 to 5 credits.\n");

    printf("You are dealt 5 cards, and you then choose which ");

    printf("cards to keep ");

    printf("or discard.\n");

    printf("You want to make the best possible hand.\n");

    printf("\nHere is the table for winnings (assuming a ");

    printf("bet of 1 credit):");

    printf("\nPair\t\t\t\t1 credit");

    printf("\nTwo pairs\t\t\t2 credits");

    printf("\nThree of a kind\t\t\t3 credits");

    printf("\nStraight\t\t\t4 credits");

    printf("\nFlush\t\t\t\t5 credits");

35_9780789751980_appb.indd   323 7/17/13   12:25 PM



324 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    printf("\nFull House\t\t\t8 credits");

    printf("\nFour of a Kind\t\t\t10 credits");

    printf("\nStraight Flush\t\t\t20 credits");

    printf("\n\nHave fun!!\n\n");

}

// Function to deal the first five cards

void getFirstHand(int cardRank[], int cardSuit[])

{

    int i,j;

    int cardDup;

    for (i=0; i < 5; i++)

        {

            cardDup = 0;

            do {

                // Card rank is one of 13 (2-10, J, Q, K, A)

                cardRank[i] = (rand() % 13);

                //  Card suit is one of 4 

                //  (club, diamond, heart, spade)

                cardSuit[i] = (rand() % 4);

                // Loop that ensures each card is unique

                for (j=0; j < i; j++)

                {

                    if ((cardRank[i] == cardRank[j]) &&

                    (cardSuit[i] == cardSuit[j]))

                    {

                        cardDup = 1;

                    }

                }

            } while (cardDup == 1);

        }

}

35_9780789751980_appb.indd   324 7/17/13   12:25 PM



APPENDIX B  THE DRAW POKER PROGRAM 325

// Function that changes the suit integer value to a character 

// representing the suit

char getSuit(int suit)

{

    switch (suit)

    {

        case 0:

            return('c');

        case 1:

            return('d');

        case 2:

            return('h');

        case 3:

            return('s');

    }

}

// Function that changes the rank integer value to a character 

// representing the rank

char getRank(int rank)

{

    switch (rank)

    {

        case 0:

            return('A');

        case 1:

            return('2');

        case 2:

            return('3');

        case 3:

            return('4');

        case 4:

            return('5');

        case 5:

35_9780789751980_appb.indd   325 7/17/13   12:25 PM



326 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

            return('6');

        case 6:

            return('7');

        case 7:

            return('8');

        case 8:

            return('9');

        case 9:

            return('T');

        case 10:

            return('J');

        case 11:

            return('Q');

        case 12:

            return('K');

    }

}

// Function to get the user's bet between 1 and 5

int getBet()

{

    int bet;

    do //Will keep running until the user enters 0-5

    {

        printf("How much do you want to bet? (Enter a number ");

        printf("1 to 5, or 0 to quit the game): ");

        scanf(" %d", &bet);

        if (bet >= 1 && bet <= 5)

        {

            return(bet);

        }

        else if (bet == 0)

        {

35_9780789751980_appb.indd   326 7/17/13   12:25 PM



APPENDIX B  THE DRAW POKER PROGRAM 327

            exit(1);

        }

        else

        {

            printf("\n\nPlease enter a bet from 1-5 or ");

            printf("0 to quit the game.\n");

        }

    } while ((bet < 0) || (bet > 5));

}

// Last function reviews the final hand and determines the value of 

// the hand.

int analyzeHand(int ranksinHand[], int suitsinHand[])

{

    int num_consec = 0;

    int i, rank, suit;

    int straight = FALSE;

    int flush = FALSE;

    int four = FALSE;

    int three = FALSE;

    int pairs = 0;

    for (suit = 0; suit < 4; suit++)

        if (suitsinHand[suit] == 5)

            flush = TRUE;

    rank = 0;

    while (ranksinHand[rank] == 0)

        rank++;

    for (; rank < 13 && ranksinHand[rank]; rank++)

        num_consec++;

    if (num_consec == 5) {

        straight = TRUE;

    }

35_9780789751980_appb.indd   327 7/17/13   12:25 PM



328 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

    for (rank = 0; rank < 13; rank++) {

        if (ranksinHand[rank] == 4)

            four = TRUE;

        if (ranksinHand[rank] == 3)

            three = TRUE;

        if (ranksinHand[rank] == 2)

            pairs++;

    }

    if (straight && flush) {

        printf("Straight flush\n\n");

        return (20);

    }

    else if (four) {

        printf("Four of a kind\n\n");

        return (10);

    }

    else if (three && pairs == 1) {

        printf("Full house\n\n");

        return (8);

    }

    else if (flush) {

        printf("Flush\n\n");

        return (5);

    }

    else if (straight) {

        printf("Straight\n\n");

        return (4);

    }

    else if (three) {

        printf("Three of a kind\n\n");

        return (3);

    }

    else if (pairs == 2) {

        printf("Two pairs\n\n");

        return (2);

    }

35_9780789751980_appb.indd   328 7/17/13   12:25 PM



APPENDIX B  THE DRAW POKER PROGRAM 329

    else if (pairs == 1) {

        printf("Pair\n\n");

        return (1);

    }

    else {

        printf("High Card\n\n");

        return (0);

    }

}

// This function looks through each of the five cards in the first hand 

// and asks the user if they want to keep the card. If they say no, 

// they get a replacement card.

void getFinalHand(int cardRank[], int cardSuit[], int finalRank[],

             int finalSuit[], int ranksinHand[],

             int suitsinHand[])

{

    int i, j, cardDup;

    char suit, rank, ans;

    for (i=0; i < 5; i++)

    {

        suit = getSuit(cardSuit[i]);

        rank = getRank(cardRank[i]);

        printf("Do you want to keep card #%d: %c%c?", i+1, rank, suit);

        printf("\nPlease answer (Y/N): ");

        scanf(" %c", &ans);

        if (toupper(ans) == 'Y')

        {

            finalRank[i] = cardRank[i];

            finalSuit[i] = cardSuit[i];

            ranksinHand[finalRank[i]]++;

            suitsinHand[finalSuit[i]]++;

            continue;

        }

35_9780789751980_appb.indd   329 7/17/13   12:25 PM



330 C PROGRAMMING ABSOLUTE BEGINNER’S GUIDE

        else if (toupper(ans) == 'N')

        {

            cardDup = 0;

            do {

                cardDup = 0;

                finalRank[i] = (rand() % 13);

                finalSuit[i] = (rand() % 4);

                // First check your new card against the 5 original   

                // cards to avoid duplication

                for (j=0; j < 5; j++)

                {

                     if ((finalRank[i] == cardRank[j]) &&

                     (finalSuit[i] == cardSuit[j]))

                    {

                        cardDup = 1;

                    }

                }

                 // Next, check the new card against any newly drawn 

                 //  cards to avoid duplication

                for (j=0; j < i; j++)

                {

                     if ((finalRank[i] == finalRank[j]) &&

                     (finalSuit[i] == finalSuit[j]))

                    {

                        cardDup = 1;

                    }

                }

            } while (cardDup == 1);

            ranksinHand[finalRank[i]]++;

            suitsinHand[finalSuit[i]]++;

        }

    }

 

}

35_9780789751980_appb.indd   330 7/17/13   12:25 PM



Symbols
#define directives, 60-62

#include directives, 58-60

-- operators, 119-121

++ operators, 119-121

A
addition operator, compound, 86

addPayroll() function, 292

addresses
memory, 222
passing arguments by, 

297-302

allocating heap memory, 
244-249

multiple allocations, 250-255

American National Standards 
Institute (ANSI), 11, 18

ampersands, scanf() function, 
variables, 68-69

ANSI (American National 
Standards Institute), 11, 18

apostrophes (‘), character data, 18

arguments, 294
passing, 293-294

by address, 297-302
by value, 295-297

arithmetic
compound assignment 

operators, 84-87
addition, 86
multiplication, 86
order, 88
updating variables, 85-86

operators, 74-77
assignment, 80-81
order of, 77-79
parentheses rules, 79

arrays, 52, 193, 231
character, 52-54

storing string literals, 234-
236

defining, 194-196
elements, 53, 194-197
filling, 202
names, 232-233
nums, 196
parallel, 202
passing, 303
pointers, 236, 239-241
putting values in, 197-199
searching, 201-208
sorting, 210

ascending order, 210, 
214-215

data searches, 215-220
descending order, 210, 

214-215
strings, printing in, 54
subscripts, 196
vals, 195

ascending order, sorting arrays, 
210, 214-215

ASCII table, 313-317

assignment operator, storing 
data in variables, 45

assignment operators, 45, 
80-81

compound, 84-87
addition, 86
multiplication, 86
order, 88
updating variables, 85-86

B
backslashes (/), 15

base-8 numbers, 20

base-16 numbers, 20

binary, 10

binary searches, arrays, 208

blocks, braces, 290

body, if statements, 94

braces ({}), 15
blocks, 290

break statement, 142-144, 
153-154

bubble sorting, arrays
ascending order, 210, 

214-215
data searches, 215-220
descending order, 210, 

214-215

bugs, 10

buildContact() function, 288, 292

C
calcIt() function, 17

case, variables, checking, 
172-176

case statements, 153-162

case-changing functions, 176

C compilers, 7

ceil() function, 182

char variables, 42

character arrays, 52-54
storing string literals, 

234-236

character string literals, 43

character-testing functions, 172

characters, 18-19
ASCII table, 313-317
conversion, 36-37

Index

36_9780789751980_index.indd   331 7/17/13   12:25 PM



332 CHARACTERS

data searches, sorting arrays, 
215-220

data types, 17-18
character, 18-19
floating-point numbers, 

20-21
int, 258
integers, 19-20
mixing, 89
return, 309
variables, 42

deallocating heap memory, 
244-246

debugging, 10

declaring
structures, 259
variables, 44-45

decrement operators, 74, 
119-121

deficiencies, heap memory, 249

defined constants, 60-64
naming, 61

defining
arrays, 194-196
constants, #define directive, 

60-62
pointer variables, 222-224
structures, 258-262
variables, 44-45, 60

same line, 44

dereferencing pointer variables, 
225, 228

descending order, sorting arrays, 
210, 214-215

disk files, 268-270

dot operator, 262

double variables, 42

do...while loops
repeating code, 127-129
terminating, 142-144

Draw Poker program, 14
comments, 25
functions, 289
header files, 60
main() function, 96

compound assignment 
operators, 84-87

addition, 86
multiplication, 86
order, 88
updating variables, 85-86

compound relational operators. 
See logical operators

compound statements, 94

computer programs. See 
programs

concatenation, strings, 176

conditional operators, 116-118

constant data, 42

constants
defined, 60-64

naming, 61
named, 60
variables, 232

continue statement, 145-146

control string characters, leading 
spaces, scanf() statements, 68

control strings, printf() 
function, 32

conversion characters, 36-37

copy() function, passing argu-
ments by, 295-297

counter variables, 84

cross-platform software, 7

D
data

literal, 42
saving, 267
sorting, 209
storing in variables, 45-48
structures, 257

defining, 258-262
putting data in, 262-265

testing
else statement, 96-100
if statement, 92-96

keywords, extracting from, 
164-167

pointers, 234
sending single character to 

screen, 164-167
strings, 19

closing files, 269

code
See also programming
blocks, opening, 14
Blocks C compiler, 7-9
comments, 23-25

alternate style, 28
multi-line, 25
single-line, 28
specifying, 25-27

debugging, 10
indention, 16
line breaks, 27-28
loops

continue statement, 
145-146

do...while, 127-129
for, 132-139
nesting, 135
terminating with break 

statement, 142-144
while, 124-129

output, printf() function, 31-39
source, 10
whitespace, 27-28
word processors, copying 

from, 15

commands, 11
do...while, repeating code, 

127-129
while, 124

repeating code, 124-129

comments, 23-25
alternate style, 28
multi-line, 25
single-line, 28
specifying, 25-27

compilers, 7, 10
Blocks C compiler, 7-9

36_9780789751980_index.indd   332 7/17/13   12:25 PM



FUNCTIONS 333

isalpha(), 172
isdigit(), 172
islower(), 172-176
isupper(), 172-176
main(), 16-17, 21-22, 59-62, 

96, 260, 285, 288, 295-296, 
308-312

malloc(), 246-252
math, 181-184

generating random values, 
187-188, 191

logarithmic, 184-186
trigonometric, 184-186

passing arguments, 293-294
by address, 297-302
by value, 295-297

pow(), 183
prAgain(), 291
printContact(), 288
printf(), 16, 22, 32, 49, 56, 59, 

65-66, 118, 126, 195, 233, 
270, 310

code output, 31-39
controlString, 32-33
conversion characters, 

36-37
escape sequences, 34-36
format, 32-33
placeholders, 32
printing strings, 33
prompting users before 

scanf(), 66-68
prototypes, 305, 309-311
putc(), 281
putchar(), 164-167
puts(), 177, 195
rand(), 187-188, 191, 214
returning values, 306-309
scanf(), 65, 300

ampersands, 68-69
header file, 66
problems with, 68-71
prompting users with 

printf(), 66-68
sizeof(), 196, 247
sqrt(), 183, 306
srand(), 187
strcpy(), 54, 59, 176-179, 194, 

197, 234

floating-point numbers, 20-21
conversion characters, 36-37

floor() function, 182

fopen() function, 268-270, 
278-279

for loops, 131-135, 138-139
nested, 210
relational test, 134
semicolons, 133
terminating, break statement, 

142-144

formats, printf() function, 32-33

found variable, 206

fprintf() function, 270

fputc() function, 281

free() function, 246, 252

freeing heap memory, 250

fscanf() function, 274

fseek() function, 279-284

functions, 286-289
addPayroll(), 292
buildContact(), 288, 292
calcIt(), 17
case-changing, 176
ceil(), 182
character-testing, 172
Draw Poker program, 289
exit(), 153
fabs(), 183-184
fclose(), 269, 278
feof(), 274
fgetc(), 281
fgets(), 235-236, 272
floor(), 182
fopen(), 268-270, 278-279
fprintf(), 270
fputc(), 281
free(), 246, 252
fscanf(), 274
fseek(), 279-284
getch(), 172
getchar(), 164-169, 172
gets(), 177, 194, 235, 307
gradeAve(), 307-308
half(), 295-296

E
editors, 10

elements, arrays, 53, 194-197

else statement, testing data, 
96-100

Enter keypress, terminating, 
getchar() function, 167-168

equals sign, storing data in vari-
ables, 45

escape sequences, 34-36
printf() function, 34

exit() function, 153

expressions, 6, 74

F
fabs() function, 183-184

fclose() function, 269, 278

feof() function, 274

fgetc() function, 281

fgets() function, 235-236, 272

Fibonacci searches, arrays, 208

file pointers, 268
global, 269

files
closing, 269
disk, 268
header, 59

building, 62-64
Draw Poker program, 60
quotation marks, 59

including, #include preproces-
sor directives, 58-60

navigating, 279-284
opening, 268-270
pointer, 268
random-access, 268, 277-278

opening, 278-279
sequential, 268-275

filling arrays, 202

flag variables, 206

float variables, 42

floating-point absolute values, 183

36_9780789751980_index.indd   333 7/17/13   12:25 PM



334 FUNCTIONS

terminating, break statement, 
142-144

while, 124-129

M
machine language, 10

main() function, 16-17, 21-22, 
59, 62, 96, 260, 285, 288, 
295-296, 308-312

#include directives, 60

maintenance, programs, 24

malloc() function, 246-252

math
compound assignment oper-

ators, 84-87
addition, 86
multiplication, 86
order, 88
updating variables, 85-86

operators, 74-77
assignment, 80-81
order of, 77-79
parentheses rules, 79

math functions, 181-184
generating random values, 

187-191
logarithmic, 184-186
trigonometric, 184-186

members, 257

memory, heap, 243-246
allocating, 244-249
deallocating, 244-246
deficiencies, 249
freeing, 250
multiple allocations, 250-255
pointer variables, 243-244

memory addresses, 222

mixing data types, 89

mode strings, fopen() 
function, 270

modulus operator, 76

multi-line comments, 25

indention, code, 16

infinite loops, 123

initializing strings, 54-56

int data type, 258

int variables, 42

integers, 19-20

integrated development 
environment (IDE), 7

invStruct statement, 260-262

isalpha() function, 172

isdigit() function, 172

islower() function, 172-176

isupper() function, 172-176

K-L
keywords, extracting single char-

acter from, getchar() function, 
164-167

leading 0, integers, 20

leading spaces, control string 
characters, scanf() 
statements, 68

length, strings, 51-52

line breaks, 27-28

literal data, 42

local variables, 45, 290-292

logarithmic functions, 184-186

logical operators, 103-108
avoiding negative, 109-111
combining with relational 

operators, 104-108
order, 111-112

loops, 123, 131
continue statement, 145-146
do...while, 127-129
for, 131-135, 138-139

nested, 210
relational test, 134
semicolons, 133

infinite, 123
nesting, 135

string, 176-179
strlen(), 176-179
tolower(), 176
toupper(), 129, 176, 240

G
getchar() function, 164-169, 172

terminating Enter keypress, 
167-168

getch() function, 172

gets() function, 177, 194, 235, 307

global file pointers, 269

global variables, 45, 290-292, 312

gradeAve() function, 307-308

H
half() function, 295-296

header files
building, 62-64
Draw Poker program, 60
quotation marks, 59
scanf() function, 66

heap memory, 243-246
allocating, 244-249
deallocating, 244-246
deficiencies, 249
freeing, 250
multiple allocations, 250-255
pointer variables, 243-244

hexadecimal numbers, 20

I-J
IDE (integrated development 

environment), 7

if...else statements, 96, 
116-118, 150

if statement, 91, 149
body, 94
testing data, 92-96

increment operators, 119-121

incrementing counter 
variables, 132

36_9780789751980_index.indd   334 7/17/13   12:25 PM



PROGRAMS 335

characters, 234
constants, 232
defining, 222-224
dereferencing, 225, 228
files, 268

global, 269
heap memory, 243-244
memory addresses, 222
structure, 262

postfix operators, 119

pow() function, 183

prAgain() function, 291

prefix operators, 119

preprocessor directives, 57
#define, 60-62
#include, 58-60

placing, 60

printContact() function, 288

printf() function, 16, 22, 32, 49, 
56, 59, 65-66, 118, 126, 195, 
233, 270, 310

code output, 31-39
controlString, 32-33
conversion characters, 36-37
escape sequences, 34-36
format, 32-33
placeholders, 32
printing strings, 33
prompting users before 

scanf(), 66-68

printing
strings, 33
strings in arrays, 54

programmers, 6

programming
See also code
process, 10
requirements, 7-10

programs, 6-7
building, 62-64
Draw Poker, 14

comments, 25
functions, 289
header files, 60

IDE (integrated development 
environment), 7

logical, 103-108
avoiding negative, 109-111
combining with relational 

operators, 104-108
order, 111-112

modulus, 76
order of, 77-79
parentheses rules, 79
postfix, 119
prefix, 119
relational, 91-92, 96, 103-104

combining with logical 
operators, 104-108

sizeof(), 121-122

order
arrays, 210, 214-215
compound assignment 

operators, 88
logical operators, 111-112
operators, 77-79

organizing programs, 285-289

origin values, fseek() function, 279

output, 7
code, printf() function, 31-39
programs, 14

P
parallel arrays, 202

parameters, 294

parentheses (()), 15
logical operators, 111
rules, operators, 79

passing
arguments, 293-294

by address, 297-302
by value, 295-297

arrays and nonarray 
variables, 303

placeholders, 32

placing #include directives, 60

pointer files, 268

pointers, 221, 231
array names, 232-233
arrays of, 236, 239-241

multiple allocations, heap 
memory, 250-255

multiplication operator, 
compound, 86

N
named constants, 60

naming
defined constants, 61
variables, 43-44

navigating files, 279-284

nested for loops, 210

nesting loops, 135

nonarray variables, passing, 303

nonintegers, promoting/
demoting, 182

null zeros, 50

numbers
floating-point, 20-21
hexadecimal, 20
integers, 19-20
octal, 20

nums array, 196

O
octal numbers, 20

open source software, 7

opening
files, 268-270
random-access files, 278-279

operators, 73-77
assignment, 80-81

variables, 45
compound assignment, 84-87

addition, 86
multiplication, 86
order, 88
updating variables, 85-86

conditional, 116-118
decrement, 74, 119-121
dot, 262
increment, 119-121

36_9780789751980_index.indd   335 7/17/13   12:25 PM



336 PROGRAMS

strcpy() function, 54, 59, 176-
179, 194, 197, 234

string functions, 176-179

string.h header file, 176

string literals, character arrays, 
234-236

string terminator, 50

string variables, 49

strings, 19, 171
character arrays, 52-54
concatenation, 176
control, printf() function, 32
initializing, 54-56
length, 51-52
mode, fopen(), 270
printing, 33
printing in arrays, 54
string terminator, 50
terminating zero, 50-51

strlen() function, 176-179

struct statement, 258-259

structures, 257-258
declaring, 259
defining, 258-262
putting data in structure 

variables, 262-265

subscripts, 53
arrays, 196

switch statement, 150-154

syntax, code comments, 25-27

T
terminating loops, break state-

ment, 142-144

terminating zero, strings, 50-51

testing data
else statement, 96-100
if statement, 92-96

tolower() function, 176

toupper() function, 129, 176, 240

trigonometric functions, 184-186

typecasting, 88-89

semicolons
commands and functions, 33
for loops, 133

sequential files, 268-275
closing, 269
opening, 268-270

sequential searches, arrays, 208

single-line comments, 28

sizeof() function, 121-122, 
196, 247

software, cross-platform and 
open source, 7

sorting arrays, 209
ascending order, 210, 

214-215
data searches, 215-216, 

219-220
descending order, 210, 

214-215

source code, 10

spacebar character, 18

spaces, control string characters, 
scanf() statements, 68

specifying comments, 25-27

sqrt() function, 183, 306

srand() function, 187

statements
break, 142-144, 153-154
case, 153-162
compound, 94
continue, 145-146
do...while, repeating code, 

127-129
for, repeating code, 132-139
if, 91, 149

body, 94
testing data, 92-96

if...else, 96, 116-118, 150
invStruct, 260-262
struct, 258-259
switch, 150-154
while, repeating code, 

124-129

storing data in variables, 45-48
equals sign, 45

maintenance, 24
organizing, 285-289
output, 7, 14
writing, requirements, 7-10

prototypes (functions), 305, 
309-311

putc() function, 281

putchar() function, 164-167

puts() function, 177, 195

Q-R
quotation marks (),characters, 19

header files, 59

rand() function, 187-188, 191, 214

random-access files, 268, 277-278
navigating, 279-284
opening, 278-279

random values, generating, 
187-191

real numbers, 20-21
conversion characters, 36-37

records, 258

relational operators, 91-92, 96, 
103-104

combining with logical 
operators, 104-108

relational tests, for loops, 134

return data type, 309

returning values, functions, 
306-309

S
saving data, 267

scanf() function, 65, 300
header file, 66
problems with, 68-71
prompting users with printf(), 

66-68
variables, ampersands, 68-69

searching arrays, 201-208

self-prototyping functions, 310

36_9780789751980_index.indd   336 7/17/13   12:25 PM



ZEROES, TERMINATING, STRINGS 337

structure, putting data in, 
262-265

typecasting, 89
updating, compound assign-

ment operators, 85-86

void keyword, 309

W-Z
while command, 124

while loops
repeating code, 124-129
terminating, 142-144

whitespace, 27-28

word processors, copying code 
from, 15

writing programs, requirements, 
7-10

zeroes, terminating, strings, 
50-51

U-V
updating variables, compound 

assignment operators, 85-86

uppercase letters, defined con-
stant names, 61

vals arrays, 195

values
arrays, putting in, 197-199
passing arguments by, 

295-297
returning, functions, 306-309

variables, 41-43, 294
char, 42
checking case, 172-176
counter, 84
data types, 42
decrementing, 119
defining, 44-45, 60
double, 42
flag, 206
float, 42
found, 206
global, 45, 290-292, 312
incrementing, 119
incrementing counter, 132
int, 42
local, 45, 290-292
naming, 43-44
nonarray, passing, 303
passing, 293-294

by address, 297-302
by value, 295-297

pointers, 221, 231
array names, 232-233
arrays of, 236, 239-241
characters, 234
constants, 232
defining, 222-224
dereferencing, 225, 228
heap memory, 243-244
memory addresses, 222

scanf() function, ampersands, 
68-69

storing data in, 45-48
string, 49

36_9780789751980_index.indd   337 7/17/13   12:25 PM


	Table of Contents
	Introduction
	Who’s This Book For?
	What Makes This Book Different?
	This Book’s Design Elements
	How Can I Have Fun with C?
	What Do I Do Now?

	Part I: Jumping Right In
	1 What Is C Programming, and Why Should I Care?
	What Is a Program?
	What You Need to Write C Programs
	The Programming Process
	Using C

	2 Writing Your First C Program
	A Down-and-Dirty Chunk of Code
	The main() Function
	Kinds of Data
	Wrapping Things Up with Another Example Program

	3 What Does This Do? Clarifying Your Code with Comments
	Commenting on Your Code
	Specifying Comments
	Whitespace
	A Second Style for Your Comments

	4 Your World Premiere—Putting Your Program’s Results Up on the Screen
	How to Use printf()
	Printing Strings
	Escape Sequences
	Conversion Characters
	Putting It All Together with a Code Example

	5 Adding Variables to Your Programs
	Kinds of Variables
	Naming Variables
	Defining Variables
	Storing Data in Variables

	6 Adding Words to Your Programs
	Understanding the String Terminator
	The Length of Strings
	Character Arrays: Lists of Characters
	Initializing Strings

	7 Making Your Programs More Powerful with #include and #define
	Including Files
	Placing #include Directives
	Defining Constants
	Building a Header File and Program

	8 Interacting with Users
	Looking at scanf()
	Prompting for scanf()
	Problems with scanf()


	Part II: Putting C to Work for You with Operators and Expressions
	9 Crunching the Numbers—Letting C Handle Math for You
	Basic Arithmetic
	Order of Operators
	Break the Rules with Parentheses
	Assignments Everywhere

	10 Powering Up Your Variables with Assignments and Expressions
	Compound Assignment
	Watch That Order!
	Typecasting: Hollywood Could Take Lessons from C

	11 The Fork in the Road—Testing Data to Pick a Path
	Testing Data
	Using if
	Otherwise…: Using else

	12 Juggling Several Choices with Logical Operators
	Getting Logical
	Avoiding the Negative
	The Order of Logical Operators

	13 A Bigger Bag of Tricks—Some More Operators for Your Programs
	Goodbye if…else; Hello, Conditional
	The Small-Change Operators: ++ and --
	Sizing Up the Situation


	Part III: Fleshing Out Your Programs
	14 Code Repeat—Using Loops to Save Time and Effort
	while We Repeat
	Using while
	Using do…while

	15 Looking for Another Way to Create Loops
	for Repeat’s Sake!
	Working with for

	16 Breaking in and out of Looped Code
	Take a break
	Let’s continue Working

	17 Making the case for the switch Statement
	Making the switch
	break and switch
	Efficiency Considerations

	18 Increasing Your Program’s Output (and Input)
	putchar() and getchar()
	The Newline Consideration
	A Little Faster: getch()

	19 Getting More from Your Strings
	Character-Testing Functions
	Is the Case Correct?
	Case-Changing Functions
	String Functions

	20 Advanced Math (for the Computer, Not You!)
	Practicing Your Math
	Doing More Conversions
	Getting into Trig and Other Really Hard Stuff
	Getting Random


	Part IV: Managing Data with Your C Programs
	21 Dealing with Arrays
	Reviewing Arrays
	Putting Values in Arrays

	22 Searching Arrays
	Filling Arrays
	Finders, Keepers

	23 Alphabetizing and Arranging Your Data
	Putting Your House in Order: Sorting
	Faster Searches

	24 Solving the Mystery of Pointers
	Memory Addresses
	Defining Pointer Variables
	Using the Dereferencing

	25 Arrays and Pointers
	Array Names Are Pointers
	Getting Down in the List
	Characters and Pointers
	Be Careful with Lengths
	Arrays of Pointers

	26 Maximizing Your Computer’s Memory
	Thinking of the Heap
	But Why Do I Need the Heap?
	How Do I Allocate the Heap?
	If There’s Not Enough Heap Memory
	Freeing Heap Memory
	Multiple Allocations

	27 Setting Up Your Data with Structures
	Defining a Structure
	Putting Data in Structure Variables


	Part V: Files and Functions
	28 Saving Sequential Files to Your Computer
	Disk Files
	Opening a File
	Using Sequential Files

	29 Saving Random Files to Your Computer
	Opening Random Files
	Moving Around in a File

	30 Organizing Your Programs with Functions
	Form Follows C Functions
	Local or Global?

	31 Passing Variables to Your Functions
	Passing Arguments
	Methods of Passing Arguments

	32 Returning Data from Your Functions
	Returning Values
	The return Data Type
	One Last Step: Prototype
	Wrapping Things Up


	Appendixes
	A: The ASCII Table
	B: The Draw Poker Program

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I-J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V
	W-Z




